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Abstract

The computational time required to solve and estimate dynamic economic models

is one of the main constraints in empirical research. The Endogenous Grid Method

(EGM) proposed by Carroll (2006) is known to offer impressive speed gains over more

traditional stochastic dynamic programming methods, such as Value Function Itera-

tions (VFI). However, existing EGM implementations implicitly require an analytical

expression for the inverse marginal utility, which is not known in many interesting

cases. We propose a simple and fast approach, which we refer to as the interpolated

EGM (iEGM), that can be applied even when the inverse marginal utility is not known

analytically. We show through two applications that the iEGM inherits the speed and

accuracy of the EGM and that our approach is an order of magnitude faster than tra-

ditional approaches.
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1 Introduction

The Endogenous Grid Method (EGM) proposed by Carroll (2006) is an example of a com-
putational advancement that offers impressive speed gains over more traditional stochas-
tic dynamic programming methods, such as value function iterations, VFI (see e.g. White,
2015 and Fella, 2014). The EGM alleviates the need for numerical solvers by inverting first
order conditions, but relies on the existence of an inverse marginal utility function. All ex-
isting work employing the EGM has been restricted to models with an analytical inverse
marginal utility.

In this paper, we propose an approach for using the EGM even when the inverse
marginal utility is not known analytically. Concretely, we suggest constructing an in-
terpolator of the inverse marginal utility before solving the model. Precomputing the
interpolator is computationally costless and simple to implement. We refer to the EGM
with interpolated inverse marginal utility as the interpolated EGM (iEGM).

The iEGM expands the class of models that are practically solvable with the EGM. Ex-
amples without an analytical inverse marginal utility function include many models of
consumption and housing where consumers have CES-type utility over consumption and
housing services (see e.g. Yang, 2009) and dynamic bargaining models with limited com-
mitment (see eg. Mazzocco, 2007; Hallengreen, Jørgensen and Olesen, 2024). Until now,
such popular models could only be solved using potentially time consuming numerical
solvers. The iEGM alleviates this computational burden, allowing for more realistic eco-
nomic models. Importantly, the iEGM can be applied in combination with previous exten-
sions of the EGM to models with multiple dimensions, multiple constraints, and mixed
discrete-continuous choices.1

We demonstrate the performance of the iEGM through two examples. For expositional
simplicity, we illustrate the approach by solving the canonical buffer-stock model (see e.g.
Carroll, 1992; Deaton, 1991; and Gourinchas and Parker, 2002) with four methods: VFI,
EGM, EGM with a numerical inverse, and iEGM. In this example, the inverse marginal
utility is known analytically, enabling speed and accuracy comparisons across the four
approaches. We show that the iEGM inherits the speed and accuracy benefits of the EGM.
Next, we turn to a much richer model of dynamic household bargaining with limited
commitment where the original EGM cannot be used, but the iEGM can. We illustrate
through this example that the iEGM is 10 times faster than the EGM using a numerical

1 See e.g. Barillas and Fernández-Villaverde (2007); Hintermaier and Koeniger (2010); Ludwig and Schön
(2014); Fella (2014); White (2015); Iskhakov, Jørgensen, Rust and Schjerning (2017); and Druedahl and Jør-
gensen (2017).
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solver to invert the marginal utility and 50 times faster than VFI.2

The remainder of this paper is organized as follows. In the next section, we illustrate
the idea of the basic EGM before presenting our iEGM approach in Section 3. In Section
4, we report timing and accuracy results for the two models across solution approaches
before concluding in Section 5.

2 The Endogenous Grid Method (EGM)

To fix ideas, we first illustrate the EGM in the canonical buffer-stock model. The Bellman
equation of this model is

Vt(Mt, Pt) = max
Ct

U(Ct) + βEt [Vt+1(Mt+1, Pt+1)]

s.t.

At = Mt − Ct (assets)

Mt+1 = RAt + Yt+1 (resources/cash-on-hand)

Yt+1 = Pt+1ξt+1 (income)

Pt+1 = GPtψt+1 (perm. income)

log ξt+1 ∼ N (−0.5σξ , σ2
ξ ) (trans. income shock)

log ψt+1 ∼ N (−0.5σψ, σ2
ψ) (perm. income shock)

At ≥ 0, ∀t (no borrowing)

(1)

The first order condition for an interior solution is

U′(Ct) = βREt[V1
t+1(Mt+1, Pt+1)] (2)

where V1
t+1(Mt+1, Pt+1) is the partial derivative w.r.t. resources, Mt+1 and U′(Ct) is the

marginal utility of consumption. The envelope theorem then gives the standard Euler
equation. The main idea of the EGM is to realize that given a post-decision level of assets
after consumption, At = a, the expected discounted marginal utility,

Wt = βREt[V1
t+1(Ra + Yt+1, Pt+1)]

on the right-hand-side of (2) is known up to random shocks. We can then invert the first

2All code is available at https://github.com/ThomasHJorgensen/iEGM.
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order condition to get consumption in closed form without having to rely on numerical
solvers3

C⋆
t = U′−1(Wt) (3)

where U′−1(W) is the inverse marginal utility function taking marginal utility as input and
returns consumption. The associated endogenous level of resources is then Mt = C⋆

t + a.
All existing research, employing the EGM, has employed functional forms that give

analytical expressions for this key function. For example, if utility is constant relative risk
aversion (CRRA), the inverse marginal utility function is U′−1(W) = W−1/ρ where ρ is
the CRRA coefficient.

3 EGM without Analytical Inverse Marginal Utility (iEGM)

Many interesting economic models do not, however, have an analytic inverse marginal
utility function.4 An example of such a model is the so-called limited commitment model
in which couples bargain dynamically over economic resources to be allocated to private
consumption, cj,t for j ∈ {1, 2} and public consumption, ct (see e.g. Mazzocco, 2007).
Assuming that the consumption allocation between private and public consumption is a
purely intra-temporal problem conditional on total consumption, C, the household objec-
tive function when remaining a couple can be thought of as a function of total consump-
tion,

U(C) ≡ max
c1,t,c2,t

µU1(c1,t, ct) + (1 − µ)U2(c2,t, ct)

s. t.

ct = C − c1,t − c2,t

where µ is the bargaining weight on the utility of household member 1. The inverse of the
marginal household utility, U′−1(W), cannot be found analytically in this relevant case. In
fact, even in cases where the inverse marginal utility can be found analytically, it might be
easier and less error-prone to implement our approach.

In cases where the inverse marginal utility, U′−1(W), is not known analytically, it could

3This trick often provides great speed gains, see e.g. Jørgensen (2013) and references in the Introduction.
4The conditions for applicability of the EGM, discussed in Druedahl and Jørgensen (2017), should still

be fulfilled.
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be found using a numerical solver such that

C⋆
t = {C : U′(C)− Wt = 0}. (4)

Since the bulk of the computational cost lies in computing Wt, such a numerical inverse
could be a viable approach, if the computational cost of evaluating U′(C) is not too large.
However, in our limited commitment example, evaluating the marginal utility using finite
differences would potentially require solving the intra-temporal problem several times. In
such cases, evaluating the inverse marginal utility numerically is rather costly.

We instead propose to replace the inverse with a precomputed interpolator, Č(W), that
typically can be constructed without a significant change in the computation speed and
accuracy of the numerical solution. In turn, the only modification to the EGM implemen-
tation is replacing equation (3) with

C⋆
t = Č(Wt), (5)

where a wide variety of interpolation methods such as B-splines or projection methods
can be used to construct the interpolator.

We construct the interpolator through two simple steps.5 First, we construct a grid
over consumption,

−→
C , with #C number of points. Evaluating the marginal utility for all

points in this grid gives a grid of associated marginal utilities,
−→
W = U′(

−→
C ).6 Panel a) of

Figure 1 shows this relationship with the constructed consumption grid,
−→
C , on the x-axis

and the associated marginal utility on the y-axis under the assumption that preferences
are CRRA with ρ = 1.5 such that U′(C) = C−1.5.

Second, we use these associated grids to construct an interpolator for C as a function
of W. We then simply "flip the axes", such that we can use the calculated marginal utility
grid points in

−→
W together with the associated consumption grid points in

−→
C to construct

an interpolator, Č(W), of optimal consumption for values of marginal utility. We show
this in panel b) of Figure 1. The solid line shows the actual inverse marginal utility in
the CRRA example from above, and the dashed lines connecting the known node points
illustrate linear interpolation between these points.

In our example, we have abstracted from the potential dependency on other choices
and/or state variables since the interpolation can simply be constructed for all relevant

5Chebyshev interpolation can be employed following an alternative strategy. Instead of the two steps,
use a numerical solver, as discussed above, to get the inverse marginal utility in the precomputation step in
order to control exactly where the grid points in

−→
W are placed.

6If the marginal utility is not known analytically, it can e.g. be approximated by finite differences of the
utility function, U(Ct). This is the approach we employ in the limited commitment application below.
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conditioning variables that enter in the marginal utility. In the buffer-stock example, the
interpolator is independent of both state variables.

Figure 1: Construction of Interpolator of Optimal Consumption, Č(W).

(a) Grids over
−→
C and

−→
W = U′(

−→
C ).
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(b) Flipped axis and interpolator, Č(W).
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Notes: The figure illustrates the two steps of the proposed approach in panel a) and b). Panel a) shows how
constructing a grid of #C = 10 points over values of consumption

−→
C can be used to evaluate the marginal

utility,
−→
W = U′(

−→
C ). Panel b) shows how flipping the axes provides nodes which can be used to construct an

interpolator for the object of interest, namely Č(W) using the known points in (
−→
W ,

−→
C ). The solid line shows

the actual inverse marginal utility with CRRA utility with CRRA coefficient of ρ = 1.5, and the dashed lines
connecting the known node points illustrate linear interpolation between these points.

4 Accuracy and Speed

Here we show accuracy and computation time for VFI, the analytical EGM (when avail-
able), the EGM with numerical inverse as in eq. (4) and the iEGM as in eq. (5) for an in-
creasing number of precomputation nodes, #C. The computation time is relative to that of
VFI. We show results from a linear interpolator and a modified linear interpolator, where
we interpolate (linearly) the reciprocal of consumption, 1/C, since that function has less
curvature and is bounded at zero for low values of marginal utility (see panel b in Figure
1).

To measure the accuracy of the solution across implementations, we first solve a very
accurate benchmark model with VFI and very dense solution grids. We then compare the
average sum of discounted simulated utility of each of our implementations with that of
the "true" model. We report the percentage difference from the "true" discounted lifetime
utility as a measure of the solution accuracy, following Druedahl (2021).

We report results for the buffer-stock model and the richer limited commitment model
in Table 1. The Supplemental Material contains a description of the numerical solution
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and simulation of both models. See also Hallengreen, Jørgensen and Olesen (2024) for a
detailed description of the limited commitment.7 All results are based on 200 Monte Carlo
simulations of N = 10, 000 consumers for T = 20 periods.

Table 1: Accuracy and Computation Time across Methods and Models.

Buffer-stock model Limited commitment

Accuracy (%) Time (rel. to VFI) Accuracy (%) Time (rel. to VFI)

VFI 0.000 1.000 0.163 1.000
EGM, analytical 0.000 0.063 N.A. N.A.
EGM, numerical 0.000 0.111 0.163 0.290
iEGM, linear

#C = 20 0.791 0.064 0.179 0.021
#C = 50 0.081 0.064 0.163 0.021
#C = 100 0.015 0.064 0.163 0.021
#C = 200 0.003 0.064 0.163 0.021

iEGM, linear reciprocal
#C = 20 0.197 0.064 0.163 0.020
#C = 50 0.014 0.064 0.163 0.021
#C = 100 0.003 0.064 0.163 0.021
#C = 200 0.000 0.064 0.163 0.021

Notes: The table reports accuracy and computation time for the buffer-stock model in columns 2-3 and the
limited commitment model in columns 4-5. Accuracy is measured as percent deviation in avg. discounted
sum of simulated life time utility from the "true" model and computation time is relative to that of VFI. The
"true" model is a version of the model solved with VFI with significantly denser grids over all states. See
the Supplementary Material for details. We show results for the analytical endogenous grid method (EGM)
proposed by Carroll (2006) when available and a numerical inverse EGM, using eq. 4. For all models, we
report results for our iEGM method with varying number of precomputation grid points, #C, using linear
interpolation of consumption and linear interpolation of the reciprocal of consumption. See the Supplemen-
tary Material and Hallengreen, Jørgensen and Olesen (2024) for implementation details.

The results are very encouraging. From the buffer-stock model in columns 2-3, in line
with the existing literature, we see that the EGM produces a more accurate solution in only
around 7% of the time it takes to solve the model with VFI (White, 2015; Fella, 2014). We
also see that our iEGM using linear interpolation is just as fast as the baseline EGM. Even
with relatively few points in the precomputed interpolator, the deviations from the "true"
model are less than 1%. Increasing the number of points improves accuracy to be almost
on par with VFI without notably increasing computation time. Linear interpolation of the
reciprocal consumption further improves accuracy.

Turning to the limited commitment model in columns 3-4, we see a similar picture.
The iEGM is 50 times faster than the VFI without a significant reduction in the accuracy

7All results are generated on a Dell PowerEdge R640 Server with 36 dual-core Intel Xeon Gold 6154
3.0GhZ processors and 768GB RAM.
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of the solution. Additionally, the iEGM solves the model ten times faster than the EGM
using a numerical inverse with no reductions in accuracy. Such large speed gains are rare
and could lead to CPU times associated with estimation of, say, a month rather than a
year.

5 Concluding Discussion

We propose a simple and yet fast and accurate approach to implement the EGM even
when a key object, namely the inverse marginal utility, is not known analytically. The
approach, which we refer to as the interpolated EGM (iEGM), builds an interpolator of
the inverse marginal utility and uses that to solve for continuous choices without having
to rely on numerical solvers.

We illustrate the effectiveness of the iEGM through two applications; the buffer-stock
model and the limited commitment model of dynamic household bargaining. While the
former can be solved with the standard EGM, the latter cannot. The iEGM delivers accu-
rate model solutions. In the buffer-stock model example, we can compare performance
with the analytical EGM and show that the iEGM can attain similar accuracy without a
significant increase in the computation time. In our second example with a model of dy-
namic bargaining with limited commitment, where marginal utility is costly to evaluate,
the iEGM is an order of magnitude faster than EGM with numerical inverse while pre-
serving accuracy. The iEGM is up to 50 times faster than VFI in this example.
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Supplementary Material

A Numerical Details related to the Buffer-Stock Model

We solve the buffer-stock model in ratio form, where all small-letter variables denote
upper-case variables normalized by permanent income, Pt, xT = X/Pt, similarly to e.g.
Gourinchas and Parker (2002). We approximate the two-dimensional integral over future
transitory and permanent shocks using Gauss-Hermite quadrature with Q = 5 nodes in
each dimension (25 nodes in total). We solve and simulate the models for N = 10, 000
consumers for T = 20 periods in each of the 200 Monte Carlo runs. The parameters of the
model are β = 0.99, ρ = 1.5, G = 1.02, R = 1.03, σψ = 0.1, σξ = 0.1.

VFI is implemented as follows: We construct a grid over beginning-of-period (normal-
ized) resources, −→m with #m = 100 grid points with a maximum level of resources of 5. We
assume that all resources are consumed in the final period of life such that −→c T = −→m and
−→v T = U(−→c T). In previous periods, we loop through points in −→m and for the kth point in
the grid, we solve using a numerical solver,

ct[k] = arg max
c

U(c) + β
Q

∑
j=1

Q

∑
l=1

ωjωl(Gt+1ψj)1−ρv̌t+1(R(−→m [k]− c) · (Gt+1ψj)−1 + ξ l︸ ︷︷ ︸)
=mjl

t+1

where (ωj, ωl) are Guass-Hermite quadrature nodes associated with the permanent and
transitory income shocks, respectively, (ψj, ξ l), and v̌t+1(mt+1) is a linear interpolator of
the next-period value function. The value function is then
vt[k] = U(ct[k]) + β ∑Q

j=1 ∑Q
l=1 ωjωl(Gt+1ψj)1−ρv̌(R(−→m [k]− ct[k]) · (Gt+1ψj)−1 + ξ l).

EGM is implemented as follows: We construct a grid over end-of-period (normalized)
savings, −→a with #a = 100 grid points with a minimum level of zero and a maximum of 10.
We assume that all resources are consumed in the final period of life such that −→c T = −→m T,
where −→m T = −→m from above. In previous periods, we loop through points in −→a and for
the kth point in the grid, we invert the Euler equation, using that U′−1(W) = W−1/ρ in
this simple example,

ct[k] = (Wt[k])−1/ρ

S1



where

Wt[k] = βR
Q

∑
j=1

Q

∑
l=1

ωjωl(Gt+1ψj)−ρ

[
čt+1(R−→a [k] · (Gt+1ψj)−1 + ξ l︸ ︷︷ ︸)

]−ρ

=mjl
t+1

is the expected discounted marginal utility of consumption next period and čt+1(mt+1) is
a linear interpolator of the next-period consumption. The endogenous level of resources
is then −→m t =

−→c t +
−→a and the value function is not stored since it is not needed.

We also implement a numerical inverse for comparison. In this case, we use a root
finding algorithm to find the consumption level that solves

ct[k] = {c : c−ρ = Wt[k]}.

iEGM is implemented as the EGM above but with the only change that

ct[k] = Č(Wt[k])

where Č(W) is an interpolator constructed as described in the main text. We vary the
number of points, #C in the the grid over consumption,

−→
C across specifications but fix the

maximum amount in the grid to 10. All other grids are like above.

The "true" model is solved using VFI as above but with #m = 500 points in the state
variable.

The initial normalized wealth, ai,0, in simulations are drawn from a uniform distribu-
tion between zero and 2.5 (50% of maximum level of resources in the in the VFI solution).

B Numerical Details related to the Limited Commitment

Model

Here we first give a brief overview of how the model is solved before for a detailed de-
scription of the model and solution algorithm. The states in this problem for a couple
remaining together is wealth, At−1, match quality, ψt, and the bargaining power, µt−1. We
use #A = 50, #ψ = 21, and #µ = 21. The choices of a couple are all related to the con-
sumption allocation between public consumption, ct, and private consumption of each

S2



household member, cj,t for j ∈ {1, 2}. The household utility can thus be thought of as a
function of total consumption, C,

U(C; µt−1) = max
c1,t,c2,t

µt−1U1(c1,t, ct) + (1 − µt−1)U2(c2,t, ct)

s. t.

ct = C − c1,t − c2,t

(B.1)

Conditional on C, we can then solve for optimal allocation between ct, c1,t and c2,t

using a numerical solver. All code is implemented in c++ and parallelized wrt. µt−1 using
20 threads. We use NLopt’s BOBYQA algorithm in all numerical solvers.

VFI is implemented similarly to the buffer-stock model above. We solve for total con-
sumption, Ct, for a couple conditional on remaining together, at the kth point in the wealth
grid, the lth point in the match quality grid and the mth grid point in the power-grid, as

C⋆
t [k, l, m] = arg max

Ct
U(Ct;

−→µ [m]) + β
Q

∑
q=1

ωqV̌m
t+1(At, ψt+1,−→µ [m]) (B.2)

where At = R
−→
A [k] + Yt+1 and ψt+1 =

−→
ψ [l] + εq. We use Q = 5 Gauss-Hermite nodes to

approximate the expectation wrt. future match quality. V̌m
t+1(•) is a bilinear interpolator,

wrt. wealth and match quality, of the next-period value function conditional entering the
next period as married. The household utility function is found by solving eq. B.3.

EGM can only be solved using a numerical solver for the inverse of the marginal house-
hold utility. We solve this for the kth point in the wealth grid, the lth point in the match
quality grid and the mth grid point in the power-grid, using a numerical solver that min-
imizes

C⋆
t [k, l, m] = arg min

C
(U′(C;−→µ [m])− Wt[k, l, m])2 (B.3)

wrt. consumption, C, given the discounted expected marginal utility

Wt[k, l, m] = β
Q

∑
q

ωq=1 ˇdV
m
t+1(At, ψt+1,−→µ [m])

where At = R
−→
A [k] + Yt+1 and ψt+1 =

−→
ψ [l] + εq. We use Q = 5 Gauss-Hermite nodes

to approximate the expectation wrt. future match quality. ˇdV
m
t+1 is a linear interpolator
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of the marginal utility of wealth. This object is very complicated, since it depends on,
among other elements, the marginal effect of wealth on the future bargaining power. We
thus approximate this object using the found value function level and calculating finite
differences a a given grid point, k, wrt. wealth,

dVm
t (

−→
A [k], •) ≈ (Vm

t (
−→
A [k + 1], •)− Vm

t (
−→
A [k − 1], •))/(−→A [k + 1]−−→

A [k − 1]).

Since U′(C) is not known analytically in B.3, we find it using forward finite differences
of eq. B.1. We use as starting values for C (and c1,t, c2,t, and ct) the previously found
solution (across end-of-period wealth).

iEGM replaces eq. B.3 with a precomputed interpolator,

C⋆
t [k, l, m] = Č(Wt[k, l, m];−→µ [m]) (B.4)

as described in the main text. Since this depends on the bargaining power, we construct
this interpolator for each point of the #µ points in the power-grid, −→µ . We construct this
interpolator by constructing a grid over total consumption with #C points in it (for each
point in −→µ ). We, as discussed above, use forward finite differences when evaluating the
marginal utility in each consumption grid point to get the associated marginal utility grid
points.

The "true" model is solved using VFI and #A = 250, #ψ = 51, and #µ = 51 grid points in
each of the states.

Initial states when simulating are given as follows. All individuals are initialized in a
couple with a match quality of zero, ψi,0 = 0 ∀i, with a uniformly distributed distributed
level of wealth, Ai,0 between zero and 7.5 (50% of the maximum point in the grid of wealth,
used when solving the model with VFI).

B.1 Limited Commitment Details

In this section, we present a model of dynamic consumption allocations with limited
commitment bargaining within a household. The household consists of a woman and
a man, indexed w and m, respectively. The couple bargains according to the algorithm
described in Hallengreen, Jørgensen and Olesen (2024) and split up if an agreement can-
not be reached. Single individuals participate in the marriage market and can remarry
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if they meet a suitable partner. The full dynamics of the couples’ and singles’ problems,
respectively, are described in the following.

In this example, we set up a model where couples choose individual consumption, cj,t

to j ∈ {w, m}, and public consumption, ct. We have three state variables: beginning of
period t wealth, At−1, match quality, ψt and the bargaining power coming into the period,
µt−1. From the previous notation, this corresponds to St = (ψt, At−1).

Individual preferences are of the CES type,

Uj(cj,t, ct) =
1

1 − ρj

(
α1,jc

ϕj
j,t + α2,jc

ϕj
t

)1−ρj
(B.5)

and the budget constraint for a couple is

At + ct + cw,t + cm,t = RAt−1 + Yw,t + Ym,t, At ≥ 0

where R is the gross interest rate and Yj,t is exogenous income of member j. The household
utility function is a weighted sum of individual utilities with the weight µ on the woman’s
utility. Couples also receive utility from match quality, ψt, which enters additively in the
value function. Match quality follows a unit root process:

ψt+1 = ψt + εt+1

where ε ∼ iidN (0, σ2
ψ). This "love shock" is the only source of uncertainty for couples.

Single individuals also choose individual consumption, cj,t and public consumption,
ct. The state variable for singles is Sj,t = (Aj,t−1), since singles do not engage in bargaining
or have a match quality. Individual preferences are still described by (B.5). Singles face
the budget constraint

Aj,t + ct + cj,t = RAj,t−1 + Yj,t, Aj,t > 0

The value of remaining single is

Vs→s
j,t (Aj,t−1) = max

cj,t,ct
Uj(cj,t, ct) + βEt[Vs

j,t+1(Aj,t, Ap
j,t, ψt+1)]

where Et[Vs
j,t+1(Aj,t, Ap

j,t, ψt+1)] denotes the expected value of entering period t + 1 as
single (described below).
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The expected value of entering a period as single is comprised of the value of meeting
a partner, which happens with probability pt, and the value of staying single:

Et[Vs
j,t+1(Aj,t, Ap

j,t, ψt+1)] = ptEt

[
Ṽj,t+1(Aj,t, Ap

j,t, ψt+1)
]
+ (1 − pt)Vs→s

j,t+1(Aj,t)

where Ṽj,t(Aj,t−1, Ap
j,t−1, ψt) denotes the value of meeting a partner with assets Ap

j,t−1 and
initial match quality ψt:

Ṽs
j,t(Aj,t−1, Ap

t−1, ψt) = M⋆
t Vs→m

j,t (ψt, At−1) + (1 − M⋆
t )V

s→s
j,t (Aj,t−1)

s. t.

At−1 = Aj,t−1 + Ap
j,t−1,

where Vs→m
j,t (ψt, At−1) is the value of transitioning from singlehood to marriage, Vs→s

j,t (Aj,t−1)

is the value of remaining single, and M⋆
t is the optimal choice to marry or not (defined

later).
When taking the expectation of Ṽj,t(•) with respect to the characteristics of the partner,

we let the partner’s wealth conditional on own wealth, and initial match quality follow
the independent distributions ΓAp

j
(a|Aj,t) and Γψ(ψ). In turn, the expected value is

Et[Ṽs
j,t(Aj,t−1, Ap

j,t−1, ψt)] =
∫ ∞

0

∫ ∞

−∞
Ṽs

j,t(Aj,t−1, a, ψ)Γψ(ψ)ΓAp
j
(a|Aj,t−1)dψda.

The value of transitioning from couple to single is similar to remaining single but cou-
ples incur a divorce cost of χ

Vm→s
j,t (Aj,t−1) = Vs→s

j,t (Aj,t−1)− χ

where all choices thus are identical as those of someone remaining single.

The value of remaining a couple with bargaining power µ is:
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Vm→m
j,t (ψt, At−1, µ) = Uj(c̃j,t, c̃t) + ψt + βEt[Vm

j,t+1(ψt+1, At, µ)]

s.t.

At = RAt−1 + Yw,t + Ym,t − (c̃t + c̃w,t + c̃m,t)

ψt+1 = ψt + εt+1

where (c̃w,t, c̃m,t, c̃t) is the optimal consumption allocation conditional on µ. This is deter-
mined by solving the couple’s optimization problem conditional on remaining together
with the level of bargaining power being µ:

c̃w,t(µ), c̃m,t(µ), c̃t(µ) = arg max
cw,t,cm,t,ct

µvw,t(ψt, At−1, cw,t, cm,t, ct, µ) (B.6)

+ (1 − µ)vm,t(ψt, At−1, cw,t, cm,t, ct, µ)

s.t.

At = RAt−1 + Yw,t + Ym,t − (ct + cw,t + cm,t)

ψt+1 = ψt + εt+1, εt ∼ iidN (0, σ2
ψ)

where the value-of-choice given some µ is

vj,t(ψt, At−1, µ, cw,t, cm,t, ct) = Uj(cj,t, ct) + ψt + βEt[Vm
j,t+1(ψt+1, At, µ)] (B.7)

where Vm
j,t+1(•) denotes the value of entering period t + 1 as married.

The value of entering a period as a couple is

Vm
j,t(ψt, At−1, µt−1) = D⋆

t Vm→s
j,t (κj At−1) + (1 − D⋆

t )V
m→m
j,t (ψt, At−1, µ⋆

t )

where κj is the share of household wealth member j gets in case of divorce (κw + κm =

1). The determination of the bargaining weight µ⋆
t and the choice of divorce, D⋆

t , are
determined as follows.

The bargaining power is updated according to the algorithm described in Hallengreen,
Jørgensen and Olesen, 2024. For this purpose let

Sj,t(ψt, At−1, µ) = Vm→m
j,t (ψt, At−1, µ)− Vm→s

j,t (κj At−1)

denote the marital surplus of household member j.
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This gives the updating rule

µ⋆
t =



µt−1 if Sj,t(ψt, At−1, µt−1) ≥ 0 for j ∈ {w, m}

µ̃w if Sw,t(ψt, At−1, µt−1) < 0 and Sm,t(ψT, At−1, µ̃w) ≥ 0

µ̃m if Sm,t(ψt, At−1, µt−1) < 0 and Sw,T(ψT, At−1, µ̃m) ≥ 0

∅ else

where
µ̃j = {µ : Sj,t(ψt, At−1, µ) = 0}

The divorce indicator D⋆ takes the value 1 if a cooperative bargaining outcome cannot
be reached and 0 otherwise, that is

D⋆ =

1 if µ⋆ = ∅

0 else

The value of transitioning from single to couple is

Vs→m
j,t (ψt, At−1) = Vm→m

j,t (ψt, At−1, µ0)

where Vm→m
j,t (ψt, At−1, µ0) is the value of remaining married (described above) with initial

bargaining weight determined through Nash bargaining,

µ0 = arg max
µ

(Vm→m
w,t (ψt, At−1, µ)− Vs→s

w,t (Aw,t−1))

× (Vm→m
m,t (ψt, At−1, µ)− Vs→s

m,t (Am,t−1))

If Vm→m
j,t (ψt, At−1, µ0)− Vs→s

j,t (Aj,t−1) > 0 for j ∈ {m, w} they form a couple and M⋆
t = 1,

otherwise they do not and M⋆
t = 0.

B.2 Numerical solution

In this section, we describe how we solve the model and highlight some specific tricks
used. For a detailed description of the implementation, we refer to the GitHub repository
with the accompanying code used to generate the results here.
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B.2.1 Precomputations

Before solving the model, we precompute an interpolater for total consumption. We con-
struct a grid over total consumption, C, and for each grid point, we compute the marginal
utility by taking the numerical derivative of the couple’s utility function:

U(C) = max
cj,cm,c

µUw(cw, c) + (1 − µ)Um(cm, c)

st. C = cw + cm + c

We save this on a grid of marginal utility, U′, and then construct an interpolator of C over
marginal utility as described in the main text, Č(U′).

B.2.2 Solving the model

We solve the model by iterating backwards, starting in the terminal period T. When doing
so using the iEGM algorithm, we need to know the expected marginal value of entering
period t as single,

wj,t(Aj,t) = βEt

[
∂Vs

j,t+1(Aj,t)

∂Aj,t

]

and for couples,

wt(At, µ) = βEt

[
µ

∂Vm
w,t+1(ψ, At, µ)

∂At
+ (1 − µ)

∂Vm
m,t+1(ψ, At, µ)

∂At

]
.

We describe the construction of these objects below.

B.2.3 Terminal period

The value of remaining single in the terminal period T is:

Vs→s
j,T (Aj,T−1) = Uj

(
csingle

j (CT), CT − csingle
j (CT)

)
where total consumption is CT = RAj,t−1 + Yj,t, i.e. all resources.
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The value of transitioning from marriage to singlehood is identical to the above apart
from a divorce cost,

Vm→s
j,T (Aj,t−1) = Vs→s

j,T (Aj,T−1)− χ

The value of remaining a couple in the terminal period is

Vm→m
j,T (ψT, AT−1, µ) = Uj(čj(CT, µ), č(CT, µ)) + ψT

where total consumption again amounts to all resources, CT = RAT−1 +Yw,T +Ym,T. Note
that Vm→m

j,t is defined for an arbitrary bargaining power µ.
The marital surplus as a function of µ is then

Sj,T(ψT, AT−1, µ) = Vm→m
j,T (ψT, AT−1, µ)− Vm→s

j,T (κj AT−1)

where κj denotes the share of marital assets received by spouse j in the event of divorce.

The value of entering a period as a couple includes both the possibility of remaining
married and divorcing, such that

Vm
j,T(ψT, AT−1, µT−1) = D⋆

TVm→s
j,T (κj AT−1) + (1 − D⋆

T)V
m→m
j,T (ψT, AT−1, µ⋆

T)

This value depends on the outcome of any potential bargaining, µ⋆
T and divorce D⋆

T which
is updated according to the algorithm described in section ??.

Knowing this value, we can precompute the expected marginal value of entering pe-
riod T. First, we compute the household value of entering period T as married over a grid
of post-decision assets,

−→
A :

Vm
T (ψT,

−→
A , µT−1) = µT−1Vm

w,T(ψT,
−→
A , µT−1) + (1 − µT−1)Vm

m,T(ψT,
−→
A , µT−1)

Next, we approximate the marginal value by centered finite differences on the grid
−→
A .

Letting
−→
A [i] denote index i on

−→
A :

∂Vm
j,T(ψT,

−→
A [i], µT−1)

∂A
=

Vm
j,T(ψT,

−→
A [i + 1], µT−1)− Vm

j,T(ψT,
−→
A [i − 1], µT−1)

−→
A [i + 1]−−→

A [i − 1]

where we extrapolate the slope at the first and last grid points.
Finally, we compute the expected marginal value over a grid of post decision assets,
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−→
A and post-decision bargaining −→µ :

wT−1(
−→
A ,−→µ ) = β

Q

∑
q=1

ωq

[
−→µ

∂Vm
w,T(ψ

q,
−→
A ,−→µ )

∂A
+ (1 −−→µ )

∂Vm
m,T(ψ

q,
−→
A ,−→µ )

∂A

]

where we use Q Gauss Hermite quadrature nodes to take expectations over future val-
ues of match quality ψT and interpolate V′

j,T using linear interpolation. This allows us to
construct an interpolator for the expected marginal value, w̌T−1(AT−1, µT−1).

The value of starting as single conditional on meeting a partner with assets Ap
T−1 and

initial match quality ψT is

Ṽs
j,t(Aj,t−1, Ap

t−1, ψt) = M⋆
t Vs→m

j,t (ψt, At−1) + (1 − M⋆
t )V

s→s
j,t (Aj,t−1)

s. t.

At−1 = Aj,t−1 + Ap
t−1,

We precompute initial bargaining power for each combination of own assets and part-
ner’s assets, (Aj,t, Ai,t) by first computing repartnering surplus over a grid of bargaining
power −→µ :

Ss→m
j,T (ψT, Aj,T−1, Ai,T−1,−→µ ) = Vm→m

j,T (ψt, AT−1,−→µ )− Vs→s
j,T (Aj,T−1)

Ss→m
i,T (ψT, Ai,T−1, Aj,T−1,−→µ ) = Vm→m

i,T (ψT, AT−1,−→µ )− Vs→s
i,T (Ai,T−1)

st. AT−1 = Ai,T−1 + Aj,T−1

We interpolate the values of Vm→m
j,T using linear interpolation.

We then determine initial bargaining power:

µ0(ψT, Aj,T, Ai,T) = arg max
µ

Ss→m
j,T (ψT, Aj,T−1, Ai,T−1, µ)Ss→m

i,T (ψT, Aj,T−1, Ai,T−1, µ)

The expected value of starting as single is computed as

ET−1

[
Vs

j,T(Aj,T−1)
]
= pT

[Kψ

∑
k

NA

∑
n

pψ
k pA

n Ṽs
j,T(Aj,T−1, Ap

n, ψk)

]
+ (1 − pT)Vs→s

j,T (Aj,T−1)

where pψ
k denotes the probability of drawing initial match quality ψi and pA

n = pA
n (Aj,T−1)

denotes the probability of drawing partner’s assets Ap
j . These probabilities are specified
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on a grid of (Aj, Ap
j ) to represent discretized approximations of Γψ and ΓAp

j
.

Finally, much like in the case of couples, we compute the expected marginal value of
entering period T as single over a grid of post-decision assets,

−→
A using centered finite

differences, with:

wj,T(
−→
A [i]) =

ET−1

[
Vs

j,T(
−→
A [i + 1])

]
− ET−1

[
Vs

j,T(
−→
A [i − 1])

]
−→
A [i + 1]−−→

A [i − 1]
(B.8)

We use this to construct an interpolator for the marginal expected value of entering a
period as single, w̌j,T−1(AT−1).

B.2.4 Earlier periods

Solving earlier periods follows almost the same approach as the terminal period, except
that we use EGM to determine consumption.

The value of remaining single is computed using standard EGM. We construct a grid
over post-decision assets,

−→
A . We can then interpolate the expected marginal value of

entering period t + 1 using the interpolator w̌j,t(Aj,t). We make use of the fact that the
marginal utility for singles is analytically invertible to find the total consumption, Cj,t:

Cj,t(
−→
A t) = U′−1

j (w̌j,t(
−→
A t))

With this, we construct an endogenous grid over resources:

−→
A j,t−1 = R(Cj,t(

−→
A t) +

−→
A t) + Yj,t

from which we can now interpolate optimal consumption given beginning of period as-
sets Aj,t−1. We enforce the credit constraint by setting consumption equal to total re-
sources for all asset values below the first point in the endogenous grid. Consumption
is now computed over an endogenous grid. It can be helpful to interpolate consumption
back onto a common grid for A used throughout all periods.

This allows us to compute the value of remaining single:

Vs→s
j,t (Aj,t−1) = Uj(c

single
j (Cj,t), Cj,t − csingle

j (Cj,t)) + βEt

[
Vs

j,t+1(Aj,t)
]

st. Aj,t = RAj,t−1 − Cj,t + Yj,t

Due to the discrete choice of whether to remarry, the value function for singles may
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have non-concave regions. We deal with this by taking an upper envelope over decision-
specific value functions to determine optimal consumption (see Iskhakov, Jørgensen, Rust
and Schjerning, 2017).

Consequently, the computation of the value of transitioning from marriage to single-
hood is identical to that of the terminal period.

The value of remaining a couple is similarly computed by interpolating the expected
marginal value over a grid of post-decision states,

−→
A . However, this time, we cannot

analytically invert the couple’s marginal utility function. Instead, we compute total con-
sumption using the precomputed interpolater:

Ct = Č(wt+1)

From here, we follow the same EGM approach as described above to compute con-
sumption as a function of beginning of period assets. Again, we take an upper envelope
over decision-specific valuefunctions to deal with potential non-concave regions stem-
ming from the possibility of divorce. We can then compute the value of remaining a
couple with bargaining power µ:

Vm→m
j,t (ψt, At−1, µ) = Uj(čj(Ct), č(Ct)) + βEt

[
Vm

j,t+1(ψt+1, At, µ)
]

The consecutive steps to compute the expected marginal values of entering period t as
a couple wt, and as single, wj,t follow the approach of the terminal period, and the steps
can be iteratively repeated until the initial time period.

The parameters on the model are given in Table B.1
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Table B.1: Parameter Values.

Income
R 1.03
Yw 1.0
Ym 1.0
Preferences
β 1/R
ρw 2.0
ρm 2.0
α1,w 1.0
α1,m 1.0
α2,w 1.0
α2,m 1.0
ϕw 0.2
ϕm 0.2
Household bargaining
κw 0.5
κm 0.5
σψ 0.1
χ 0.0
Repartnering
pt 0.1
Γψ(ψ) N (0, σψ)
ΓA(Ap

j |Aj) Deterministic*

*In the example, we set Ap
j as deterministic conditional on Aj, such that Ap

j = Aj for all values of Aj.
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