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UNIT ROOT VECTOR AUTOREGRESSION

WITH VOLATILITY INDUCED STATIONARITY

Anders Rahbek and Heino Bohn Nielsen

Department of Economics, University of Copenhagen

Abstract: We propose a discrete-time multivariate model where lagged levels of

the process enter both the conditional mean and the conditional variance. This way

we allow for the empirically observed persistence in time series such as interest rates,

often implying unit-roots, while at the same time maintain stationarity despite such

unit-roots. Specifically, the model bridges vector autoregressions and multivariate

ARCH models in which residuals are replaced by levels lagged. An empirical illus-

tration using recent US term structure data is given in which the individual interest

rates have unit roots, have no finite first-order moments, but remain strictly sta-

tionary and ergodic, while they co-move in the sense that their spread has no unit

root. The model thus allows for volatility induced stationarity, and the paper shows

conditions under which the multivariate process is strictly stationary and geomet-

rically ergodic. Interestingly, these conditions include the case of unit roots and a

reduced rank structure in the conditional mean, known from linear co-integration

to imply non-stationarity. Asymptotic theory of the maximum likelihood estimators

for a particular structured case (so-called self-exciting) is provided, and it is shown

that
√
−convergence to Gaussian distributions apply despite unit roots as well as

absence of finite first and higher order moments. Monte Carlo simulations confirm

the usefulness of the asymptotics in finite samples.
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1 Introduction and Summary

This paper presents a new multivariate time series model which captures important styl-

ized facts of the dynamics of term structure data. In particular the model allows for the

typically observed persistence in interest rates often detected as unit-roots in the con-

ditional mean in empirical analyses. But contrary to classic autoregressive models, the

variables here enter the conditional variance as well. This can induce stationarity, such

that despite unit-roots the multivariate process is stationary. In short, the model allows

for co-movement of individual series such that for example spreads have no unit-roots,

while at the same time the individual time series are allowed to have unit-roots and to

be persistent but remain stationary. We present theory for inference as well as discuss

properties of the applied model, and moreover demonstrate by our empirical analysis that

the model captures surprisingly well dynamic features of US term structure data. Regard-

ing the results on inference we show that standard asymptotic inference applies despite

the fact that an immediate implication of the unit-roots present in the model is that the

processes will have fat tails and only finite low order moments.

Our insistence on allowing for unit-roots is based on the rich literature in econometrics

from which it is by now a stylized empirical fact that term structure data, as well as

other financial economic time series, are persistent and appear to have unit-roots when

modelled as autoregressive (AR) processes. However, the implied non-stationarity is often

questioned from an economic, or finance, point of view, and alternative models which

allow unit-root in the conditional mean, but are stationary due to the formulation of the

conditional volatility have been proposed in the literature. A large part of such literature

deals with continuous time models, where a key example is the celebrated Cox-Ingersoll-

Ross model, cf. Cox et al. (1985), where both drift and volatility terms are functions

of the level of the continuous time process. Our proposed model also fits well within

the rich term structure literature, both in continuous as well as in discrete time, see for

example Gourieroux, Monfort and Polimenis (2002), Le, Singleton and Dai (2010) and

Carta, Fantazzini and Maggi (2008) for affine term structure models.

With respect to discrete time series models, the proposed model bridges two differ-

ent time series modeling approaches: co-integration analysis, which is multivariate and

allows for unit-roots or reduced rank, and the more recent double autoregressive modeling,

which so far has been univariate. In the co-integrated vector AR models, see Johansen

(1996), unit-roots, or equivalently, reduced rank in the conditional mean imply that the

stochastic trends are non-stationary and have random walk behavior. This contrasts the

univariate double autoregressive (DAR) models where a unit-root does not necessarily

imply non-stationarity as lagged values of the process enter the conditional variance, see

e.g. Borkovec and Klüppelberg (2001) and Ling (2004). To fix ideas consider initially the
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univariate DAR of order one as given by,

 = −1 +

∙q
 + 2

2
−1

¸
 (1)

where  is i.i.d. N(0 1)  and   0 
2
  0. Despite the unit-root in the conditional

mean, the process is strictly stationary provided 0  2 . 242 which contrasts the case
where squared lagged differences enter the conditional variance in which case unit-roots

indeed imply non-stationarity, see Lange, Rahbek and Jensen (2011). In terms of our

proposed term structure modeling the univariate unit-root DAR can be thought of as a

model for the short term interest rate, driving the level and volatility of interest rates

with different maturities. Consider thus next  defined as the spread between an interest

rate with long maturity and the short term rate , with the dynamics of  given by,

 = −1 +

∙q
 + 2

2
−1 + 2

2
−1

¸
 (2)

with  i.i.d. N(0 1)  and , 
2
, 

2
  0. This way, the lagged short term rate ,

enters as a variance factor of the spread  That is, a stationary factor with a unit-root

enters the conditional variance of the spread, where if ||  1 the interest rates are co-

moving. Note that in terms of the affine term structure framework of Le, Singleton and

Dai (2010) also the joint process ( )
0
can be used as a multivariate (unobservable)

factor.

Within the unit-root and co-integration literature much attention has been devoted to

the inclusion and role of constant terms. A key problem in this strand of literature is that

a constant term  may induce a linear trend due to the implied aggregation as caused

by the unit-roots. This has lead to various ways of including restricted constants, and

other deterministic terms, in multivariate co-integrated vector AR models, cf. Johansen

(1996). However, as we show below, we do avoid such issues here and can include an

unrestricted constant vector  in our multivariate model. This is novel in the framework

of nonlinear time series. In terms of (1), we show that adding a constant term,  say, on

the right hand side does not imply a linear trend, nor that the properties of  in terms

of stationarity and (geometric) ergodicity are changed, despite the unit-root in .

For an introduction to the recent univariate DAR models, inference and estimation

have been explored for univariate DAR models in Ling (2004, 2007) and Ling and Li

(2008), while extremal and tail behavior have been analyzed for DAR models of order

one in Borkovec (2000), Borkovec and Klüppelberg (2001) and Klüppelberg and Perga-

menchtchikov (2004). As also used in the mentioned references DAR processes with

Gaussian innovations may be restated as random coefficient autoregressions (RCAR), for

which Aue, Horváth and Steinebach (2006) and Berkes, Horváth and Ling (2009) provide

results, as well as key references, on estimation and inference. In fact, the RCAR ap-

proach is applied in Fong and Li (2004), where co-integration is discussed with random

3



coefficients. The parametrization in Fong and Li (2004) of the conditional variance is

quite different when compared to ours, and moreover Fong and Li (2004) apply a local

approach where the conditional variance parameters loading the levels vanish at the rate

of  , where  denotes the number of observations. Klüppelberg and Pergamenchtchikov

(2007) study extremal behavior of a class of multivariate RCAR processes with finite

second order moments, which excludes the unit-roots which is a main interest here.

The paper is structured as follows: In the next section we describe in detail our pro-

posed multivariate model. The model is a vector AR model with reduced rank structure

in the conditional mean, allowing for unit-roots, while the conditional variance is cast in

line with multivariate BEKK ARCH models but in levels. Next, we derive conditions for

stationarity, geometric ergodicity and existence of moments, where it is emphasized that

the unit-roots imply that the process in general, while being stationary, will only have

finite small order moments. Asymptotic theory of the maximum likelihood estimators for

the applied US term structure model is given. It is found that despite the fact that the

processes lack finite even second and first order moments, maximum likelihood estima-

tors (MLEs) are asymptotically standard
√
−Gaussian distributed, which is supported

by Monte Carlo simulations. Observe that our focus is on the Markovian case of one

lag in the conditional mean and variance; in the last sub-section we discuss the general

non-Markovian case of further lags as well as other extensions left for future research. It

is important though to stress that we found for the US term structure application the

Markovian case to be sufficient.

Throughout, the following notation is applied: The symbols
→ and

→ are used to

indicate weak convergence and convergence in probability, respectively. For any  × 

matrix  of rank ,   , let ⊥ denote a  × (− ) matrix whose columns form a

basis of the orthogonal complement of span(). For any square matrix  || denotes the
determinant,  () denotes the spectral radius, while kk denotes the norm of , where

the Euclidean norm is given bykk2 =  {0}. We furthermore apply the non-standard
notation ×2 := 0. Finally, for any matrices  and  (⊗) is the Kronecker

product.

2 The Reduced Rank ARModel with Volatility

Induced Stationarity

As explained in the introduction we wish to formulate a multivariate AR model which

on the one hand allows for unit-roots in the conditional mean, while at the same time,

allows levels to appear in the multivariate conditional ARCH part, which — possibly —

induce stationarity. The model is notationally a little involved, and we discuss therefore

in separate steps the conditional AR mean and the conditional ARCH parametrization to
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allow for level induced stationarity. As mentioned we study the Markovian case here, and

discuss the non-trivial extension of the model to the non-Markovian case in Section 6.

Consider first the conditional mean part:

2.1 Conditional Mean

Consider the -dimensional vector autoregressive model of order one with a constant term

as given by,

 = + Φ−1 +   = Ω
12
 

where Φ is (× )-dimensional,  is -dimensional and  i.i.d. N(0 ) such that Ω is

the conditional variance of  Before specifying the parametrization of the conditional

covariance Ω, we note that  ≥ 1 unit-roots in the autoregressive polynomial,  () :=
−Φ,  ∈ C, implies that Π := Φ− has reduced rank,  = − under the well-known
assumption:

Assumption 1 With  () =  −Φ,  ∈ C, assume that | ()| = 0 implies that there
are  roots at  = 1, while the remaining roots are larger than one in absolute value.

As applied repeatedly in co-integration analysis, the reduced rank  of Π can be para-

metrized explicitly,

Π = 0 =
X

=1


0


where   are -dimensional vectors,  = 1 2  , and  = (1     ),  = (1     ).

Thus we may rewrite the vector AR model, using Π and first order differences ∆ =

 − −1,

∆ = + 0−1 + ,  = Ω
12
 . (3)

Next, observe that under Assumption 1, the following skew-projection identity from Jo-

hansen (1996) applies,

 = ⊥⊥
0
⊥ + 

0 (4)

where ⊥ = (⊥1  ⊥) and ⊥ =
¡
⊥1  ⊥

¢
 both of dimension (× )  and

where ⊥⊥ := ⊥ (
0
⊥⊥)

−1
and  :=  (0)−1. Use the skew-projection to decompose

 as follows,

 = ⊥⊥
0
⊥ + 

0 (5)

By pre-multiplying in (3) with 0⊥ it follows that the -dimensional process, 
0
⊥ is a

unit-root process, and the  linear combinations 0⊥ in (5) are common stochastic unit-

root factors which are loaded by the matrix ⊥⊥ into . Likewise, pre-multiplying with

0 in (3) gives, 0 = 0 + ( + 0)0−1 + 0. That is, the  linear combinations
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in the conditional mean, the conditional mean relationships, 0, are autoregressive with

no unit-roots; we say that they co-move.

Observe that as mentioned it is customary in co-integration analysis to consider re-

strictions on the constant vector  to avoid the implied aggregation, and hence linear

deterministic trend, arising from the reduced rank of Π. Despite the fact that 0⊥ in-

deed have unit-roots here these turn out not to imply aggregation of , see Theorem 1;

this is due to the fact that the lagged levels enter the conditional variance to be defined

next.

2.2 Conditional Variance

We propose a version of the BEKK ARCH model of Engle and Kroner (1995) for Ω in

(3) as it fits well our US data application. Naturally alternative choices for the functional

specification of Ω could be chosen by replacing lagged residuals (here ) with  in the

rich class of multivariate ARCH formulations, see e.g. Bauwens, Laurent, and Rombouts

(2006) for a survey of multivariate ARCH specifications. While such constructions appear

straightforward, we emphasize that each of these choices require separate treatment as

the different specifications will have different implications for the properties of the model.

Consider initially the unrestricted BEKK ARCH model of order  from Engle and

Kroner (1995) as given by,

Ω = Ω+

X
=1

(−1)
×2

 (6)

where  are (× ) matrices and Ω  0. Observe that in the BEKK ARCH model, the

conditional variance is represented in terms of sums of squared terms and cross-product

terms are omitted. The unrestricted BEKK ARCH is discussed in detail in Engle and

Kroner (1995), including identification and generality of the parametrization in (6). While

one can indeed apply this directly, we propose more structure to the BEKK ARCH such

that the impact of the linear combinations 0−1 and 0⊥−1 in the conditional variance

is transparent as in the factor-ARCHmodels discussed in inter alia Bauwens et al. (2006).

To do so, we use the skew-projection (4) again, which can be used to rewrite any (× )-

dimensional matrix  as follows,

 =
h
 + ⊥⊥⊥

i
0 +

£
⊥⊥⊥⊥ + ⊥

¤
0⊥ (7)

where  (× ) and ⊥⊥ (× ) are defined in (4), and  := 0 ( × ), ⊥ :=

0⊥ ( × ), ⊥⊥ := 0⊥⊥⊥ ( × ) and finally, ⊥ := 0⊥⊥ ( × ).

Using (7) in (6) and omitting cross-product terms, the suggested conditional covariance
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parametrization is then given by,

Ω = Ω+
¡


0−1
¢×2

+
³
⊥⊥⊥

0−1
´×2

+
¡
⊥⊥⊥⊥

0
⊥−1

¢×2
+
¡
⊥

0
⊥−1

¢×2
 (8)

With Ω given in (8), we have imposed a structure which allow the lagged unit-root

factors 0⊥−1 as well as lagged conditional mean relations 
0−1 to enter the conditional

variance of . More precisely, the role of the parameters  and ⊥⊥ are to load the

factors 0−1 and 0⊥−1 in the conditional variance of the linear combinations 0
and 0⊥ respectively, as follows from using 0⊥ = 0 and 0⊥⊥ = 0; and hence the

remaining parameters    = ⊥  provide the "magnitude" or "size" of the loaded

factors in the conditional variance.

We add more structure by setting ⊥ = 0 in (8),

Ω = Ω+
¡


0−1
¢×2

+
¡
⊥⊥⊥⊥

0
⊥−1

¢×2
+
¡
⊥

0
⊥−1

¢×2
 (9)

This further structure has the immediate implication that the  stochastic common fac-

tors 0⊥ have  unit-roots and a conditional variance driven solely by their own past

values since 0⊥ = 0. That is, in (9) the conditional mean of 
0
⊥∆ is 

0
⊥, while the

conditional variance is given by,

0⊥Ω⊥ = 0⊥Ω⊥ +
¡
⊥⊥

0
⊥−1

¢×2


On the other hand the conditional covariance of 0 is driven by their own past 
0−1

as well as the common unit-root factors 0⊥−1. We shall say that in this case, the 

stochastic factors, 0⊥, are self-exciting, while 0 are not. It is this version of the

model which we successfully apply to the US term structure, and indeed find that the

short rate is a self-exciting stochastic factor driving (parts of) the term structure. It

is important to underline that while 0⊥ marginally is a multivariate unit root DAR

process, the model does not exclude covariation in the sense that the conditional covari-

ance,  (0 0⊥ | −1) = 0Ω⊥ is unrestricted since Ω is in (9). That is, it is indeed

a multivariate model.

2.3 Parameters of the model

For the statistical analysis the general model given by (3) with Ω in (8) or (9) is over-

parametrized as  and  (× ) as well as ⊥ and ⊥ (× ) are not identified without

imposing just-identifying restrictions. As an example, one can apply the classic identi-

fication schemes well-known from co-integration, see Johansen (1996), where identified

versions of  and  are given by,

 :=  (0)−1 and  :=  (0)  (10)
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with  a known (× ) matrix. Likewise, one may apply identified versions of ⊥ and ⊥
as given by,

⊥ := ( − 0) ⊥ and ⊥ :=
³
 −  (

0
)

−1
0
´
⊥ (11)

With this, or some other identification scheme, the parameters of the model are given by

, , ⊥, ⊥ and Ω  0, in addition to the loadings in the BEKK variance,  ( × ),

⊥ ( × ), ⊥⊥ ( × ) and ⊥ ( × ).

3 Stationarity and Geometric Ergodicity

We discuss here under which assumptions of the parameters the conditional mean relations

0 are stationary and geometrically ergodic, while also  despite its unit-roots in the

characteristic polynomial is geometrically ergodic. As emphasized this is different from

co-integration where the unit-roots imply that  is non-stationary, which again leads to

asymptotic distributions of parameter estimates characterized by Brownian motions. Here

the unit-roots imply ergodicity, but at the same time the processes cease to have finite

even small moments and hence imply heavy tails in .

3.1 AR BEKK model

We start by formulating a general result regarding stationarity and geometric ergod-

icity in the AR model with unit-roots in the conditional mean part, and the general

BEKK ARCH Ω in (6) which embeds the restricted parametrizations in (8) and (9),

∆ = +

X
=1


0
−1 + Ω

12
 , Ω = Ω+

X
=1

(−1)
×2

 (12)

with  i.i.d. N(0 ). Following this we provide more details for the case applied in the

empirical example, where the stochastic factors are self-exciting, see (9).

Our first result states as claimed conditions under which, despite the reduced rank,

the process  is stationary and geometrically ergodic:

Theorem 1 The process  given by (12) is stationary, and geometrically ergodic, if the

associated top Lyaponov coefficient is strictly negative, that is,

 := lim
→∞

∙
1

 log

°°°° Q
=1



°°°°¸  0 (13)

Here  := ( + 0 + ) and  is (× )−dimensional i.i.d. Gaussian with mean zero
and a covariance structure defined by  ( ⊗ ) =

P

=1 ( ⊗) 

8



We emphasize that while the characterization here of stationarity of  for a given

set of parameters is implicit, the parameter set for which (13) holds is non-empty, as

can be illustrated by simulations described below. We discuss this in more detail for the

structured model where the conditional variance is parametrized such that the stochastic

factors are self-exicing.

The proof of Theorem 1 is located in Appendix A and is based on rewriting the

multivariate process as a random coefficient autoregressive process and application of the

drift criterion from Markov chain theory, see also Ling (2007) where a similar approach is

used for univariate DAR models of general order. The proof, and hence Theorem 1 is not

simple to generalize to other of the existing general covariance structures frommultivariate

ARCH in Bauwens et al. (2006), as many of the non-BEKKmodels, including the constant

conditional correlation model, can not be written on random coefficient form.

Remark 1 Computing the Lyaponov coefficient in (13) by simulation, one may use that,

 = lim
→∞

"
1

log

°°°°°
Y

=1



°°°°°
#
a.s.,

as also noted by several authors, see e.g. Ling (2007) and Francq and Zakoian (2010, The-

orem 2.3). There is a rich and general literature on efficient computation of log kQ

=1k
and hence . In the illustrations of this paper we applied ideas from Dieci and Van Vleck

(1995), where QR-decompositions are considered.

Remark 2 The classic co-integrated AR model is obtained with  = 0 in which case

it is well-known that  is non-stationary. This conforms with our result as in this case

 =  is non-stochastic, and under Assumption 1,

 = lim
→∞

1

log

°°°° Q
=1



°°°° = log  () = 0
Note also in this respect, that with  = 0 then, contrary to the case of   0 the constant

term  accumulates and generates a linear trend in the 0⊥ process.

Remark 3 From Xie and Huang (2009, equation 1.2) it follows that  has finite 0th

order moment,  kk  ∞, if the moment Lyapunov coefficient   0 where  :=

lim→∞
h
1

log kQ

=1k
i


Remark 4 As used in Klüppelberg and Pergamenchtchikov (2007), the general Lyapunov

condition (13) is implied by the more explicit criterion,

 ( ( ⊗))  1 (14)

However, this is a strong assumption for the multivariate case, in the sense that it implies

that not only is  geometrically ergodic but also that it has finite second order moments,
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 kk2  ∞. Moreover, by definition this stronger assumption does not allow for unit-
roots in (), or equivalently the reduced rank of Π Π = 0, and hence cannot be used

to verify stationarity of  under Assumption 1.

3.2 Self-exciting Stochastic Factors

When turning to the more structured case where the stochastic factors of the model,¡
0⊥

¢
=1

 are self-exciting much more can be said in terms of verification of geometric

ergodicity. In addition to results for the self-exciting case, we propose a further reduction

of the model, which we label as separability. Under separability we may have that the

conditional mean relations (0)=1 are stationary with finite second order moments,

while the stochastic factors do not have any finite moments.

Consider the -dimensional process  as given by (3) and (9) with self-exciting factors

which we re-state here,

∆ = + 0−1 + ,  = Ω
12
 , (15)

Ω = Ω+
£


0−1
¤×2

+
£
⊥

0
⊥−1

¤×2
+
£
⊥⊥⊥⊥

0
⊥−1

¤×2
 (16)

using the already applied convention that  =  (0)−1 for any (×) matrices  

such that 0 has full rank. The next theorem states that  in this self-exciting case is

stationary as induced by the conditional volatility. Moreover, the condition for stationarity

does not depend on the contribution from the term
£
⊥

0
⊥−1

¤×2
. Stated differently,

whatever the value or size of ⊥is, while the individual realizations of  will vary with

⊥ , the conclusions regarding geometric ergodicity and stationarity remain unaffected.

Thus we consider the following regularity conditions:

Assumption 2 Define  =  + 0 + 

  and  = − + 


  where 


 and 


 are

independent and i.i.d. Gaussian distributed, with mean zero and covariance structure

given by  (

 ⊗ 


 ) =

¡
 ⊗ 

¢
and  (


 ⊗ 


 ) =

¡
⊥⊥ ⊗ ⊥⊥

¢
 Assume that,

 := lim
→∞

∙
1

 log

°°°° Q
=1



°°°°¸  0 and  := lim
→∞

∙
1

 log

°°°° Q
=1



°°°°¸  0 (17)

One may observe that  corresponds to a RCAR model for 
0 without the 0⊥

process, and in this sense the assumption addresses a "skeleton" process for 0. The

fact that 0⊥ is self-exciting means that  simply is the RCAR coefficient for this process.

Note also that the covariance Ω in Ω plays no role in the determination of the stochastic

behavior.

Thus the next theorem shows as claimed that ⊥ play no role for the dynamic

properties of . The proof is given in Appendix A and is based on application of a novel

drift-function for the drift criterion from Markov chain theory:
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Theorem 2 Under Assumption 1 and Assumption 2, the -dimensional process  in

(15)-(16) is geometrically ergodic, and has a stationary representation with  kk ∞,
for some small  ∈ (0 1).

Next, we consider the mentioned concept of separability, by this we mean that ⊥ = 0

in (16). That is, 0−1 enter the variance only in the linear combinations 
0 and

likewise for 0⊥ Note though that Ω is not restricted to be block-diagonal. In the case

of separability we observe:

Corollary 1 Assume that Assumptions 1-2 hold such that the -dimensional process  in

(15)-(16) is geometrically ergodic. Assume furthermore that we have separability, ⊥ =

0, and that

 ( ( ⊗ ))  1

Then the conditional mean relations 0 are geometrically ergodic and strongly mixing

with geometric rate. Furthermore, they have finite second order moments,  k0k2 ∞.

Remark 5 Regarding tail and extremal behavior of the -dimensional process, 0 some

further results can be deduced from Klüppelberg and Pergamenchtchikov (2004, 2007) under

the assumptions in Corollary 1 of separability. In particular, they find under regularity

conditions (Klüppelberg and Pergamenchtchikov, 2007, condition H0), that the tails may

be characterized as Pareto-like, that is, the conditional mean relations 0 here have finite

second order moments and a tail index   2.

Remark 6 Regarding tail and extremal properties of the -dimensional stochastic factors,

0⊥ to our knowledge no results are known for   1, while for  = 1 these are studied in

detail in Borkovec (2000) and Borkovec and Klüppelberg (2001). In particular, Borkovec

and Klüppelberg (2001, Proposition 2) implies Pareto-like tails with index ⊥  2 such

that   ⊥ as expected.

4 Asymptotics

As mentioned in the introduction we derive the asymptotics for the bivariate model, which

is the model applied in the empirical illustration. In particular it is shown that classic√
−convergence to Gaussian distributions apply to all estimators including the reduced

rank parameter  despite the implied heavy tails of the process . A small Monte Carlo

simulation study in Section 4.1 illustrates that the Gaussian approximation works well

even for smaller, or moderate, samples such as  = 200 400

The empirically applied bivariate model with a self-exciting factor is given by,

∆ = + 0−1 +   = Ω
12
  and (18)

Ω = Ω+
£


0−1
¤×2

+
£
⊥

0
⊥−1

¤×2
+
£
⊥⊥⊥⊥

0
⊥−1

¤×2
 (19)

11



where  is i.i.d. N(0 2). With  = ( 0)
0
and  = (1 )

0
, the parameters of the model,

denoted , are given by  = (1 2)
0, the scalar parameters   2 

2
⊥  and 2⊥⊥ ,

as well as the positive definite covariance matrix,

Ω =

Ã
11 12

12 22

!
 0

Thus with the parameters given by,

 =
©
  Ω 2 

2
⊥  

2
⊥⊥

ª
 (20)

the log-likelihood function to be maximized equals,

 () =

X
=1

 () = −12
X
=1

£
log |Ω|+ 

©
Ω−1 

0


ª¤
 (21)

where the notation  = (∆ − − 0−1) and Ω is used to emphasize that  and

Ω are functions of .

The result in Theorem 3 states that despite the lack of finite low order moments

of , the ML estimator ̂ is indeed asymptotically Gaussian distributed. The proof is

given in Appendix B, and is based on deriving properties of the score, information and

third order derivatives of the log-likelihood function in order to use Jensen and Rahbek

(2004, Lemma 1). The findings are in line with known results for univariate models,

such as in Jensen and Rahbek (2004) where it is shown that the (G)ARCH parameters

are
√
 -consistent despite lack of finite moments of the GARCH process, as well as Ling

(2004, 2007) for univariate DAR models. However, univariate results do not necessarily

generalize to multivariate cases. Specifically, for the BEKK model, being the multivariate

generalization of the univariate ARCH model, the findings in Avarucci, Beutner and

Zaffaroni (2012) demonstrate that high order moments of the BEKK processes are needed

in general for
√
 -Gaussian inference to apply. Our contrasting results below reflect that

Avarucci et al. (2012) study the BEKK model with no conditional mean, and therefore

our results show that by combining (a restricted) BEKK structure for the conditional

variance and a reduced rank AR structure for the conditional mean, a different model,

and hence inference, results despite the apparent similarities.

Theorem 3 Consider the bivariate model in (18)-(19), with  i.i.d. N(0 2), and para-

meters given by  in (20). Then under Assumptions 1-2 and for 0 satisfying 20  0

for   =  ⊥, Ω0  0 and |Ω0|    0 for some constant , there exists a fixed

open neighborhood N (0) of the true value 0 such that with probability tending to one as
 →∞,  () has a unique maximum at ̂. Moreover, ̂ is consistent and asymptotically

Gaussian, √

³
̂ − 0

´
→  (0Σ) 

with Σ consistently estimated by the observed information evaluated at  = ̂.
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Remark 7 The regularity conditions assumed to hold include Assumptions 1 and 2, in

addition to 20  0 for   =  ⊥ Ω0  0 and |Ω0|    0 for some constant .

That 20  0 holds corresponds to the assumption in classic ARCH literature of positive

parameters, or equivalently, that ARCH effects are present, see for example Francq and

Zakoian (2010). That Ω0 is positive definite and satisfies that the determinant is bounded

away from zero is a regularity condition applied, and also discussed in detail, in Comte

and Lieberman (2003) as well as Jeantheau (1992), from where the regularity condition

originates in the ARCH literature. It implies for example that |Ω|  , cf. Appendix B.

4.1 Simulation Study

To illustrate the usefulness of the derived asymptotics for the estimators, we perform a

small Monte Carlo simulation1. The data generating process is given by the model in (18)-

(19), with parameters 0 given under Figure 1. The observations , for  = 1 2   ,

are generated based on pseudo-random draws for  i.i.d. N(0 2), and sample lengths of

 = 200 and  = 400 are considered.

For estimation we parametrize Ω  0 using a Choleski factorization Ω =  0, and

report results for the parameters 11  0, 12 ∈ R, 22  0 in the lower triangular .
Figure 1 (A)-(I) report kernel estimates of the densities of the ten estimators based

on 104 Monte Carlo replications. For a sample length of  = 400, the kernel densities are

quite close to a Gaussian reference distributions with matching mean and variance, and

the derived standard asymptotics seem to apply without problems.

For a small sample of  = 200, the Gaussian approximation is still useful for most

parameters. A small deviation is visible for ̂, where there is a minor probability mass

at zero. The Gaussian approximation is also less accurate for ̂2 and ̂22.

5 Empirical Application

To illustrate the use and interpretation of the model, consider a bivariate data set for

monthly US interest rates, 1981:1-2006:12, covering the short end of the yield curve. The

variables considered are the yield of a one year maturity zero coupon bond, 1, and a

three month treasury bill rate, 2. The time series are illustrated in Figure 2 (A), while

the spread, 1− 2, is given in Figure 2 (B). Figure 2 (C)-(D) show the first differences,

where a pronounced heteroskedasticity is observed.

We estimate the model in (18)-(19) with  i.i.d. N(0 2). As in the simulations, we

apply a Choleski factorization for Ω  0, and we thus estimate the parameters   

Ω =  0 and ,   =  ⊥. Estimates and standard errors are reported in column ()

1Numerical calculations are done using Ox 6.30, see Doornik (2007).
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Figure 1: Kernel density estimates of the simulated distributions of the estimated pa-

rameters. Simulations are based on  = 200 (red curve) and  = 400 (green curve)

observations and 104 Monte Carlo replications. Thin black curves represent Gaussian dis-

tributions with matching mean and variance, and vertical lines indicate the true values in

the data generating process. The parameters are given by  = −05,  = 0, 1 = 2 = 02,

11 = 1, 12 = 05, 22 = 1,  = 05, and ⊥ = ⊥⊥ = 025.

of Table 1.

First, we note that the estimate of  is extremely close to minus unity, suggesting

that the conditional mean relationship, 0, is actually the interest rate spread. Testing

the spread hypothesis,  = −1, produces Wald and likelihood ratio statistics of 0019
and 0030, that are far from significant in the limiting 2(1) distribution. Imposing the

restriction produces the estimates in column () of Table 1, and we note that estimates for

the remaining parameters are basically unchanged. Below we continue the interpretation

based on the restricted model in column ().

An immediate implication of the restricted model is that the interest rate levels, 1

and 2, are unit root processes whereas the spread, 
0 = 1−2, is not; the estimated
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Figure 2: Monthly US interest rates, 1981-2006.

adjustment coefficient towards the conditional mean relationship, ̂ = −016, is clearly
significant.

Next, note that the parameters in the conditional variance, , ⊥, and ⊥⊥ are

all significantly different from zero. The self-exiting factor is the short rate, 0⊥, which

is a unit root DAR. In contrast, the conditional variance of the spread, 0, is driven

by the squared self-exciting short rate and the squared spread itself. Also recall that the

model allows correlation between the short rate, 0⊥, and the spread, 
0

The estimated conditional variances of 1 and 2, i.e. the diagonal elements in Ω,

are shown in Figure 3 (A) and (B), and, not surprisingly, the patterns share similarities

with the short rate. Figure 3 (C) and (D) show the estimated residuals, ̂, while (E)

and (F) present the standardized residuals, ̂. Note again the pronounced conditional

heteroskedasticity, which is to a large extend accounted for by the model.

To assess the stationarity and discuss the dynamic properties of the conditional mean

relationship, 0 and the self-exiting factor, 0⊥, we calculate the Lyapunov exponents

based on the random coefficient autoregressive representation of the bivariate system,

and it is convenient to consider the system multiplied by (0 0⊥)
0. A direct application

of Theorem 1 would lead to computing the top Lyapunov coefficient of the RCAR model

with  = +  with  = diag (0840 1) and the variance of  given by

 ( ⊗ ) =

⎛⎜⎜⎜⎝
01732 0 0 00242

0 0 0 0

0 0 0 0

0 0 0 00562

⎞⎟⎟⎟⎠ 
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() ()

Baseline Restricted

 −01627
(00436)

−01600
(00348)

 −10042
(00305)

−1
1 00822

(00247)
00839
(00224)

2 00030
(00128)

00030
(00128)

11 01409
(00191)

01412
(00191)

12 00364
(00223)

00365
(00223)

22 00677
(00182)

00676
(00181)

 01770
(00375)

01733
(00292)

⊥ 00243
(00035)

00242
(00032)

⊥⊥ 00563
(00044)

00561
(00045)

(̂) −165021 −165169
Table 1: Estimation results for the model in (18)-(19). Standard errors in parentheses.

or alternatively, that 
¡
vec () vec ()

0¢
= diag (01732 0 00242 00562). Direct com-

putation of the matrix product in (13) is numerically instable because the Lyapunov

stability condition implies that the matrix product converges to zero exponentially fast.

Instead, we follow Dieci and Van Vleck (1995) and note that the two Lyapunov exponents,

characterizing the dynamics of the system, can be found as the log of the eigenvalues of

Λ = lim→∞((
Q

=1)
0(
Q

=1))
−2. An efficient and numerically stable algorithm can

be implemented using a sequential QR-decomposition of the matrix products, see Dieci

and Van Vleck (1995, Section 2.1). For the estimated system, the two simulated Lyapunov

exponents based on  = 108 random matrices, ,  = 1 2  , are given by

̂ = −019728
(004218)

and ̂ = −000158
(0000257)



where numbers in parentheses are standard errors based on numerical delta method. By

Theorem 2, the top Lyapunov coefficient ̂ = max(̂ ̂) = ̂ is associated with the self-

exiting stochastic factor,  = 0⊥, while the smaller Lyapunov exponent, ̂ = −019728,
is associated with the conditional mean relationship,  = 0. Both are significantly

negative, implying stationarity and ergodicity of both series despite the presence of a unit

root. In addition we note that ̂  ̂, reflecting that the non-unit root spread visually

appears to be much more stable than the short rate.
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Figure 3: Conditional variance and residuals.

6 Extensions and Concluding Remarks

To summarize,we propose to study the multivariate model given by (3), ∆ = 0−1+

 + Ω
12
 , with a structure imposed on Ω as in (8) or (9). We derive conditions for

geometric ergodicity and establish that for the empirically applied bivariate model classic√
 -asymptotics hold.

An immediate extension is to include more lags. One may consider the reparametrized

-dimensional vector autoregression of order  say with conditional heteroskedasticity,

∆ = 0−1 +
−1X
=1

Γ∆− +   = Ω
12
  and  = 1   (22)

with  i.i.d. N(0 ) and   as before, while (Γ)=1−1 are (× ) matrices. The

conditional covariance Ω in the simplest case of the BEKK ARCH(m) is parametrized as

a function of lagged levels  and differences ∆ as,

Ω = Ω+
¡
−1

¢×2
+

−1X
=1

¡
∆−

¢×2
 (23)
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where Ω  0, the parameters 
¡


¢
1=1−1 are (× ) matrices and the initial

values 0∆0 ∆−+1 are fixed in the statistical analysis of the model. The regularity

condition in this case replacing Assumption 1 is given by replacing  () by  () =

(1− )  − 0 −P−1
=1 Γ (1− ) , see Johansen (1996). As to restricting further the

model in line with the discussion of the Markovian case, while in principle straightforward

in terms of parametrization, we refrain from this here as alone the results on geometric

ergodicity at this stage can be generalized. Note finally, that it seems likely that due

to the complications of such further added parameters, one should apply bootstrapping

rather than classic asymptotic inference, as also used in Cavaliere, Rahbek and Taylor

(2010, 2012) for co-integration analysis under heteroscedasticity.

18



Appendix

Throughout the appendix we use C and  to denote generic positive constants.

A Geometric Ergodicity

Proof of Theorem 1: The process  in (15) is a Markov chain, and the drift criterion

from Markov chain theory, see Bec and Rahbek (2004), can be used to establish geometric

ergodicity and stationarity of . Observe that the process  in (12) can be rewritten as

a random coefficient vector autoregression,

 = +−1 + 

where  is i.i.d. N(0Ω)  with := ( + 0 + ) and where  is a (× )−dimensional
Gaussian i.i.d. mean zero and a covariance structure defined by ( ⊗ ) =

P

=1 ( ⊗) 

Furthermore,  and  are mutually independent. By Tjøstheim (1990) a drift function

 (·) can be applied to the −step process,  rather than  itself, where

 = ()(−1) +
−1X
=0

() (− + ) 

using the notation () := −1 · · ·−(−1) for any -indexed square matrix  and

 ≥ 1 while (0) := . An identical recursion is also used in Ling (2007, equation (A.9)),

with the exception of the extra term here due to the constant vector  here. With drift

function,  () = 1 + kk where   0 is chosen appropriately below, it follows as in

Ling (2007, (A.3)) that we can choose  ∈ (0 1) and  such that 
°°()

°°  1. This

we use here to see that  plays no role in the argument as we get,


¡
 () | (−1) = 

¢ ≤ 
°°()

°° kk + C
Hence with  some constant, and for  ()   , we have


°°()

°° kk + C = ∙k()kkk+C
1+kk

¸
 ()   () 

where  is some constant with ||  1. Thus  is stationary and geometrically ergodic,

provided

 := lim
→∞

"
1

 log

°°°°°
Y

=1



°°°°°
#
 0

¥
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Proof of Theorem 2: As in the proof of Theorem 1, observe that the process  in (15)

is a Markov chain, and the drift criterion can be used to establish geometric ergodicity

and stationarity of . We do so in three steps: First, we define  as  appropriately

rotated, and rewrite  as a random coefficient autoregression. Second, as before using

Tjøstheim (1990), the −step process,  rather than  itself is used for the inspection

of the drift criterion. Third, for the drift criterion a new drift function is applied to 

which exploits the multivariate structure of  and hence . We set  = 0 without loss

of generality as it plays no role in the derivations, see the proof of Theorem 1.

It follows immediately that the Markov chain  = (
0
 

0
)
0
= ( ⊥)

0
 has the same

transition density as the random coefficient process given by,

 = Φ−1 +  where Φ =

Ã
 

0 

!
 (A.1)

Here  =
¡
0 

0


¢0
is i.i.d. N

¡
0 ( ⊥)

0
Ω ( ⊥)

¢
and independent of the i.i.d.

Gaussian (× ) matrix sequence Φ. The  ( × )   ( × − ) and  (−  × − )

are all independent and i.i.d. Gaussian, with  and  defined in Assumption 2, while

 = 0 and  ( ⊗ ) = (− ⊗ −) +
¡
⊥⊥ ⊗ ⊥⊥

¢


Now,  satisfies the regularity conditions such that the drift criterion can be applied

and we apply a new drift function to the −step process, . The new drift-function  (·)
is given by,

 () = 1 + kk +  kk 
where  and  are constants chosen appropriately below. More precisely, we show that

with   and  appropriately chosen constants, then for  ()   ,


¡
 () | (−1) =  = (0 0)0

¢
  () 

where   1 while for  () ≤ the conditional expectation is bounded.

Now from the definition of  we have as in the proof of Theorem 1,

 = Φ()(−1) +
−1X
=0

Φ()−

Next, by definition of Φ in (A.1), for  ≥ 1

Φ() =

Ã
() ()

0 ()

!
 () =

X
=1

(−1)−(−1)(−−)

while Φ(0) =  implies 
(0) = 0 ( × (− ))  We thus find, with  = (0 0) 


¡
 () | (−1) = 

¢
= 1 +

³
kk | (−1) = 

´
+ 

³
kk | (−1) = 

´

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where,


³
kk | (−1) = 

´
= 

°°°°°() + ()+

−1X
=0

³
()− + ()−

´°°°°°


≤ 
°°()°° kk +

°°°()°°° kk + C

³
kk | (−1) = 

´
= 

°°°°°()+
−1X
=0

()−

°°°°°


≤ 
°°()°° kk + C

Collecting terms, we thus find


¡
 () | (−1) = 

¢ ≤ ∙+k()kkk+k()k+k()kkk
1+kk+kk

¸
 () 

Since (17) are assumed to hold, then as established below, one can choose some small

positive , 0    1 and  large enough such that, 
°°()°°  1 and  °°()°°  1

This again means that, 
°°°()°°° + 

°°()°°   provided  is chosen such that,

 
k()k
1−k()k  0. (A.2)

Hence for some   0,  ()   , then 
¡
 () | (−1) = 

¢
  ()  for some

  1. It is simple to see that 
¡
 () |(−1) = 

¢
is bounded for  () ≤  and the

result hold as desired. That is,  and hence  is geometrically ergodic, see Tjøstheim

(1990), and hence  is, since by definition  =
¡
⊥⊥ 

¢
 using (4).

Finally, we need to establish that 
°°()°°  1 and 

°°()°°  1 for some

large  and small  provided (17) holds. This follows by standard arguments as in

Ling (2007, proof of (A.3)), from which it holds that for some   1 and  large

enough, 
°°°()°°°  1. Likewise for (), and we can choose  = min ( ) and

 = max ( ). ¥

Proof of Corollary 1: With  in (15)-(16) such that ⊥ = 0, then 0 is a Markov

chain, which have a random coefficient representation, 0 = 
0−1 + ,  =  +

0 + 

 with  independent of , and  i.i.d. mean zero Gaussian with variance

0Ω Thus by e.g. Feigin and Tweedie (1985, Theorem 3), 0 is geometrically ergodic

with finite second order moments as claimed. ¥

B Asymptotics

Proof of Theorem 3: The result follows by establishing regularity conditions in Lemma

1 from Jensen and Rahbek (2004) for the score, information and third order derivatives
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of the log-likelihood function respectively. Specifically, Lemma B.1 below establishes

condition (A.1) of Jensen and Rahbek (2004, Lemma 1), Lemma B.2 condition (A.2) and

finally Lemma B.3 condition (A.3).

The derivations are notationally quite involved, and we start by defining some key

variables and expressions. Also to simplify we leave  out of . Thus the parameters in

, of dimension  = 8 are given by  = (  ̃
0
)0 where ̃ = (12 

0
11 

0
22)

0
 and

12 = 12, 11 =
¡
11 

2
 

2
⊥

¢0
and 22 =

¡
22 

2
⊥⊥

¢0
 (B.1)

With  () := 0, define also the variables,

12 = 1 11 =
¡
1 2−1 ()  

2
2−1

¢0
and 22 =

¡
1  2

2−1
¢0
 (B.2)

It will be useful to suppress the dependence on the parameter  sometimes. We use in

particular −1 := −1 (0) and Ω := Ω0  that is omit  when quantities are evaluated

at  = 0. When the distinction between  and 0 is important, as for example when

providing the uniform bounds for the third derivatives in Lemma B.3, we emphasize this

in the arguments.

For any (matrix) function of   (),  ( ) denotes the differential of  in the

direction  To save space we let for example ̇ denote  ( ), that is, the differential

in the direction .

We repeatedly use the definition of Ω and its inverse. Recall that by definition Ω

is given by,

Ω =

Ã
11 12

21 22

!
= Ω+ 11

£
2

2
−1 () + 2⊥

2
2−1

¤
+ 

2
⊥⊥

2
2−1 (B.3)

where we have introduced (two of) the following selection matrices,

11 =

Ã
1 0

0 0

!
, 12 =

Ã
0 1

1 0

!
 22 =

Ã
0 0

0 1

!
and  =

Ã
2 −
− 1

!
 (B.4)

Introduce next the notation for the inverse,

Ω−1 =

Ã

11 

12


21 

22

!
= Ω∗ |Ω|−1 where Ω∗ =

Ã
11 −21
−12 22

!
 (B.5)

such that
¡
Ω−1

¢

= 

 and (Ω) =  for   = 1 2. Moreover, the determinant of

Ω we write as,

() := |Ω| = 1 + 2
2
−1 () + 3

2
2−1 + 4

4
2−1 + 5

2
−1 ()

2
2−1 (B.6)

with 1 = 1122 − 212, 2 = 22
2
 3 =

¡
11

2
⊥⊥ + 22

2
⊥

¢
, 4 = 2⊥

2
⊥⊥ 

5 = 2
2
⊥⊥ . Note that by assumption () ≥ 1 ≥   0.
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Score:

For the score we have the following result:

Lemma B.1 The first order differential of the log-likelihood function is given by,

 ( ) =
1
2

©¡

Ω−1 
0
 − 

¢
Ω−1 Ω

ª− 
©
Ω−1 

ª
 (B.7)

with  = (  ̃
0
)0 Under the assumptions of Theorem 3 it holds that the score is asymp-

totically Gaussian distributed,

1√


 () |=0
→  (0Σ) as  →∞ (B.8)

Proof of Lemma B.1: The log-likelihood function is given in (21), such that with

Ω̇ denoting the differential of Ω in the direction , and similarly for ̇ where

 := ∆ − 0−1 = ∆ − ( 0)0 −1 (),

 ( ) =

X
=1

 ( ) (B.9)

= −1
2

X
=1

h

n
Ω−1 Ω̇

o
− 

n
Ω−1 Ω̇Ω

−1
 

0


o
+ 2

©
Ω−1 ̇

0


ªi


Part S1:  ()  : Standard calculus gives, Ω̇ = 0 ̇ = −−1 () (1 0)0  and
hence using (B.9),

 () |=0 = 
©
Ω−1 −1 () (1 0)

ª¯̄
=0

= 
n
Ω
−12
  (1 0)

o
−1 (B.10)

which is a martingale difference (MGD) sequence with respect to the filtration F gener-

ated by
¡
−

¢
=0−1 and 0. We find directly,


³£

 () |=0
¤2 |F−1

´
= 2−1


11 = 2−122() (B.11)

Now using (B.6) we can conclude 
¡
 () |=0

¢2
∞ since,


³£

 () |=0
¤2 |F−1

´
≤ 2−1(22+2⊥⊥

2
2−1)

[22−1+3 22−1+4 42−1+52−1 22−1]
≤ C, (B.12)

where we here, and henceforth in the proof, have omitted the subindex "0" on the true

parameters.
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Part S2:  () ̃ : Observe that ̇̃ = 0, and hence by (B.9),



³
 ̃

´¯̄̄
=0

= 1
2

n
Ω
−12
 (

0
 − )Ω

−12
 Ω̇̃

o
 (B.13)

As before this is a MGD, and using the identity in Bec, Rahbek and Shephard (2008,

equation (48)), we find initially,



Ã∙


³
 ̃

´¯̄̄
=0

¸2
|F−1

!
= 1

2


½h
Ω−1 Ω̇̃

i2¾
 (B.14)

We consider in turn each term in ̃ = (12 
0
11 

0
22)

0
:

Part S2.1:  () 12 : Using (B.14) and that by definition of Ω, Ω̇12 = 1212

where 12 is defined in (B.4):

2
³£

 () 12|=0
¤2 |F−1

´
= 

n£
Ω−1 12

¤2o
= 

©
[Ω∗12]

2
ª
2() (B.15)

=
¡
() + 2

2
12

¢
2() ≤

¡
1 + 2212

¢
 ≤ C

where we have used the definition of Ω−1 , see (B.5), and () ≥ 1 ≥   0

Part S2.2:  () 11: Using (B.13), we find

( () 11)|=0 = 1
2

n
(

0
 − )Ω

−12
 11Ω

−12


o
11 (B.16)

and, using (B.14),

2
¡£
( () )

¡
 () 

0


¢¤ |F−1
¢
= 

©
[Ω∗11]

2
ª
11

0
11

2
()

= 22211
0
11

2
()

Therefore
°° ¡£( () ) ¡ () 0¢¤ |F−1

¢°° ≤ C, using in particular that,
22() ≤ 221 + 111, 22

2
−1() ≤ 22 and 22

2
2−1() ≤ 22⊥.

(B.17)

Part S2.3:  () 22: Using (B.13),

( () 22)|=0 = 1
2

n
(

0
 − )Ω

−12
 22Ω

−12


o
22 (B.18)

As before, using (B.14),


³
[( () 22) ( () 

0
22)]

2 |F−1
´
= 21122

0
22

2
()
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and hence, °°° ³[( () 22) ( () 022)]2 |F−1
´°°° ≤ C (B.19)

using, similar to before,

11() ≤ 111 + 222 and 11
2
2−1() ≤ 32⊥⊥. (B.20)

Part S3:  ()  term: By definition ̇ = − ( 0)0 2−1 and

Ω̇ =

Ã
2
¡
2⊥⊥

2
2−1 + 2−1 ()2−1

¢ −2⊥⊥ 2
2−1

−2⊥⊥ 2
2−1 0

!
 (B.21)

Thus,

 ( )|=0 = 1
2

h

n
(

0
 − )Ω

−12
 Ω̇Ω

−12


o
− 2

n
Ω
−12
 ̇

0


oi
 (B.22)

is a Martingale difference sequence, and we find


³£

 ( )|=0
¤2 |F−1

´
= 1

2


½h
Ω−1 Ω̇

i2¾
+ ̇0Ω

−1
 ̇ (B.23)

Next, using previously applied bounds, one immediately finds

̇0Ω
−1
 ̇ = 2 2

2−122() ≤ C (B.24)

With respect to 

½h
Ω−1 Ω̇

i2¾
= 

½h
Ω∗ Ω̇

i2¾
2() quite lengthy and tedious calcu-

lations show that, with  functions of the (true) parameters 0,



½h
Ω∗ Ω̇

i2¾
=

¡
1 + 2

2
2−1 + 3

4
2−1

¢
 4
2−1

+
¡
 2
2−1

2
−1 ()

¢ ¡
4 + 5

2
2−1 + 6

4
2−1

¢
+
¡
 3
2−1−1 ()

¢ ¡
7 + 8

2
2−1 + 9

4
2−1

¢


Using the expression for () in (B.6), 

½h
Ω∗ Ω̇

i2¾
2() ≤ C at  = 0. As an example

consider a cross-product term with 2−1 of high power, 9 7
2−1−1, for which,¯̄

9
7
2−1−1

¯̄
2() ≤ |9 72−1−1|

21+
2
4

8
2−1+245

2
−1

6
2−1
≤ C

using   0.

Part S4: Cross-terms: Collecting terms, and using the inequalities in (B.20) and (B.17),

we conclude that °° ¡( () 22) ( () 011)|=0 |F−1
¢°° ≤ C (B.25)
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We have here used (B.16) and (B.18), as well as the identity Bec et al (2008, equation 48)

to see that


¡
( () 22) ( () 

0
11)|=0 |F−1

¢
= 1

2

¡

12

¢2
22

0
11 =

1
2
21222

0
11

2
()

Next, we find°° ¡£( () 22) ( () 12)|=0¤ |F−1
¢°° = °°1

2

¡

12

¢ ¡

22

¢
2212

°°
=
°°1
2
121122

°° 2() ≤ C and°° ¡£( () 11) ( () 12)|=0¤ |F−1
¢°° = °°1

2

¡

12

¢ ¡

11

¢
1112

°°
=
°°1
2
122211

°° 2() ≤ C
Observe furthermore, by definition, 

µ³
 () ̃

´
( () )

¯̄̄
=0

|F−1

¶
= 0. Next

consider the directions  and , and use (B.10) and (B.22), to see that¯̄

¡
( () ) ( () )|=0 |F−1

¢¯̄ ≤ (1+2 22−1)|−1||2−1|
()

≤ C

with 1 2 functions of 0. Finally, also

°°°°µ³ () ̃´ ( () )¯̄̄
=0

|F−1

¶°°°° ≤ C,
as



µ


³
 ̃
´
 ( )

¯̄̄
=0

|F−1

¶
= 1

2

nh

Ω∗ Ω̇̃

i h
Ω∗ Ω̇

io
2() ≤ C

computing the trace of the product, and using the bounds implied by 2(), as were applied

for each case of the ̃ parameters (in Part 2 ) and for  (in Part 3).

Part S5: Application of CLT: With  = (  ̃
0
)0 we have shown that  ()  is a

martingale difference (MGD) sequence with respect to the filtration F generated by¡
−

¢
=0−1 and 0. Moreover, as

°° ¡( () ) ( () 0)|=0 |F−1
¢°°  C and

by geometric ergodicity, the regularity conditions of Brown (1971) apply, by the law of

large numbers in Jensen and Rahbek (2007). Hence, 1√

 () |=0

→  (0Σ), as

claimed ¥

Information:

Lemma B.2 For the observed information it holds under the assumptions of Theorem 3

that, as  →∞

− 1

2 () 0

¯̄
=0

→ Σ (B.26)

Proof of Lemma B.2: We show below all terms in 2 (  ) are bounded and hence

that the law of large numbers in Jensen and Rahbek (2007) can be applied.
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Part I1: 2 () 
2 : From the proof of LemmaB.1,  ()  = 

©
Ω−1  (−1 ()  0)

ª
,

and hence

2 () 
2 = − ©Ω−111ª 2−1 ()  (B.27)

with 
°°2 () 2|=0°° = 

¡



2
−1
¢ ≤ C by (B.12). Thus indeed, geometric er-

godicity implies that the law of large numbers in Jensen and Rahbek (2007) applies to

− 1

2 () 2

¯̄
=0

.

Part I2: 2 () ̃̃
0
:With ̃

∗ 6= ̃ then as 

³
 ̃

´
= 1

2

n¡

Ω−1 
0
 − 

¢
Ω−1 Ω̇̃

o
,

we get,

−22
³
 ̃ ̃

∗´
= 

nh
Ω−1 Ω̇̃Ω

−1
 Ω̇̃

∗
i ¡
2Ω−1 

0
 − 

¢o
 (B.28)

noting that the second order differential Ω̈̃̃
∗ := Ω

³
̃ ̃

∗´
= 0. We have

2 () 
0
 = −12

©£
Ω−1

¤ £
Ω−1

¤ ¡
2Ω−1 

0
 − 

¢ª


0
 (B.29)

for     = 1 2 Using  = 0 = Ω
12
  and |{}| ≤ kk kk  the second

derivatives at 0 are bounded by,


£kk2 + 1¤ °°Ω−1 

°°°°Ω−1 
°° kk kk 

where  is some constant and hence the term will have finite expectation provided°°Ω−1 
°°°°Ω−1 

°° kk kk ≤ C (B.30)

as  kk2 ∞. As Ω−1 = |Ω|−1Ω∗ °°Ω−1 
°° kk = kΩ∗k kk () =:  () 

Now if  = 1  = 2

2 (12) ≤
¡
222 + 211 + 2

2
12

¢
2() ≤ C

using repeatedly the inequalities in (B.20) and (B.17). Likewise,

2 (22) ≤ 
¡
211 + 212

¢ ¡
1 +  2

2−1
¢
2() ≤ C and

2 (11) ≤ 
¡
222 + 212

¢ ¡
1 +  2

2−1 + 2−1
¢
2() ≤ C

Thus all terms in (B.30) are finite as desired.

Part I3: 2 () 
2 : From the proof of Lemma B.1 (Part S3 ),

−2 ( ) = 
n
Ω−1 Ω̇

¡
 − Ω−1 

0


¢o
+ 2

©
Ω−1 ̇

0


ª
 (B.31)
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and we find with Ω̈∗ = Ω ( 
∗)  ̈∗ :=  ( 

∗) = 0,

−22 (  ∗)
= 

n
Ω−1 Ω̈∗

¡
 − Ω−1 

0


¢o| {z }
()

+ 2 
nh

Ω−1 Ω̇

i³
Ω−1 Ω̇∗

´ £
Ω−1 

0


¤o| {z }
(1)

−
n³

Ω−1 Ω̇

´h
Ω−1 Ω̇∗

io
| {z }

(2)

+ 2
©
Ω−1 ̇∗ ̇

0


ª| {z }
()

− 4
n
Ω−1 Ω̇∗Ω

−1
 ̇

0


o
| {z }

()



Consider first (a), which at  = 0 up to constants equals,


n
Ω
−12
 11Ω

−12
 ( − 

0
)
o
 2
2−12

¡
2⊥⊥ + 2

¢
∗ (B.32)

As in Part I2, using |{}| ≤ kk kk and with  some constant, this is bounded by,


¡
1 + kk2

¢
 2
2−1 kΩ∗11k (), (B.33)

which has finite expectation as  kk2 ∞ and

 2
2−1 kΩ∗11k () ≤  2

2−1
¡
1 +  2

2−1
¢
() ≤ C

Likewise the terms in (1) and (2) have finite expectations as
°°°Ω∗ Ω̇

°°° () ≤ C, see
Part S3 above in the proof of Lemma B.1. The term in (c) has finite expectation as it is

bounded by  2
2−122() ≤ C. Finally, the absolute value of (d) is bounded by  kk

as
°°°Ω−12

°°° ≤ C and as just applied, °°°Ω∗ Ω̇

°°° () ≤ C.
Part I4: 2 () ̃ : As 

³
 ̃

´
= 1

2

n¡

Ω−1 
0
 − 

¢
Ω−1 Ω̇̃

o
 then

2

³
 ̃ 

´
= 

n
Ω−1 

¡
2−1 ()  0

¢
Ω−1 Ω̇̃

o


and at  = 0

2 () 
¯̄
=0

= 
n
Ω
−12
 

¡
2−1 0

¢
Ω−1 

o
 (B.34)

for   = 1 2, which is bounded (and moreover all terms have expectation zero).

Part I5: 2 ()  : Now  ( ) = 
©
Ω−1  (1 0)

ª
−1 () , such that

2 (  ) = 
©
Ω−1  (1 0)

ª
2−1| {z }

()

+ 
©
Ω−1 ̇ (1 0)

ª
−1 ()| {z }

()



+
n
Ω−1 Ω̇Ω

−1
  (1 0)

o
−1 ()| {z }

()


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As above, the absolute value of (a) squared is bounded by  kk2  2
2−1

¡
1 +  2

2−1
¢
()

and hence, as  2
2−1

¡
1 +  2

2−1
¢
() ≤ C, has finite expectation. Likewise, (b) is bounded

by  |−1| |2−1|
¡
1 +  2

2−1
¢
() ≤ C. And finally, (c) is bounded by  kk times,°°°Ω−12

°°°°°°(1 0)Ω−1 Ω̇

°°° |−1|
≤ (1+22−1+3 22−1)

12
(4 22−1+5 42−1+6|−12−1|+7|−1 32−1|)


32

()

|−1| ≤ C

with  constants, cf. the evaluations applied in Part S3 in the proof of Lemma B.1 and

the definition of () in (B.6).

Part I6: 2 () ̃: Observe that with Ω̈̃ := 2Ω

³
̃ 

´
, −22

³
 ̃ 

´
is

given by,


n
Ω−1 Ω̈̃

¡
 − Ω−1 

0


¢o| {z }−
()

2
n
Ω−1 Ω̇̃Ω

−1
 ̇

0


o
| {z }

()

+


n
Ω−1 Ω̇̃Ω

−1
 Ω̇

¡
2Ω−1 

0
 − 

¢o| {z }
()



Next, at  = 0 (a) is bounded by 
¡
1 + kk2

¢ °°°Ω−1 Ω̈̃

°°°  where Ω̈̃ = 0 apart from

the cases where ̃ = 211 
2
22. We find°°°Ω−1 Ω̈211

°°° ≤ 
°°Ω−1 11

°° |−12−1| ≤  |−12−1|
¡
1 +  2

2−1
¢
() ≤ C

and likewise,
°°°Ω−1 Ω̈222

°°° ≤  2
2−1

¡
1 +  2

2−1
¢
() ≤ C. Similarly, we get for the term

in (c) that its absolute value is bounded by 
¡
1 + kk2

¢
times

°°°Ω−1 Ω̇̃

°°° and °°°Ω−1 Ω̇

°°°.
The last two terms have been argued to be bounded by a constant in Part I2 and Part I3

above respectively. Finally, the term in (b) is bounded by  kk using again
°°°Ω−1 Ω̇̃

°°° ≤ C
and that

°°°Ω−12

°°°2  2
2−1 ≤ C. ¥

Third Derivatives:

The third derivatives are considered with  varying in a compact neighbourhood of the

true value 0  ∈ K (0). Thus we let, 2 ∈ [2  2 ] for   = ⊥  and with 2  0.

Moreover,  ∈ [
 


] for   = 1 2 


11 


22  0 and with |Ω| = 1122−212 ≥   0

Finally,  ∈ [  ] and  ∈ [  ].

Lemma B.3 With K (·) just defined, and under the assumptions of Theorem 3, it holds

that

sup
∈K(0)

¯̄
1

3 () 

¯̄
≤ V
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where V → V  ∞ and the indices   and  applied to  refer to individual entries in

 where  =
³
  ̃

0´
 ̃ = (12 

0
11 

0
22)

0


Proof of Lemma B.3: Observe first that trivially, 3 () 
3 = 0. Next, consider the

parameter entry combinations in turn, observing that by definition of the neighbourhood

K (0),
() ≥  +

£
2 + 5

2
2−1

¤
2−1 () +

£
3 + 4

2
2−1

¤
 2
2−1 (B.35)

with 2 = 
22

2
  0 3 =

¡

11

2
⊥⊥ + 

22
2
⊥

¢
 0, 4 = 2⊥

2
⊥⊥  0 5 =

2
2
⊥⊥  0.

Part TD1: 3 () 
2 for   = 1 2 From (B.27), 2 () 

2 = − ©Ω−111ª 2−1 ()
such that,

3 () 
2 = 

n
Ω
−12
 Ω

−1
11Ω

−12


o
2−1 ()

and we find,°°3 () 2°° ≤ C °°°Ω−12 Ω
−12


°°° kk°°°Ω−12 11Ω
−12


°°° 2−1 () 
which are uniformly bounded for   = 1 2. Recall that 11 =

¡
1 2−1 ()  

2
2−1

¢0
such

that evaluation of the second term,
°°°Ω−12 11Ω

−12


°°° 2−1 () is included by evaluating for
  = 1, °°°Ω−12 11Ω

−12


°°° k11k =r
n£

Ω−111
¤2o k11 ()k (B.36)

= |22 ()| k11k () ≤ (22+2⊥⊥
2
2−1)(1+ 22−1+21−1())

+[2+5  22−1]2−1()+[

3+


4 

2
2−1] 22−1

≤
∙
(22+

2
⊥⊥

2
2−1)

(+3  22−1)
+
(22+

2
⊥⊥

2
2−1)

(3+4  22−1)
+
(22+

2
⊥⊥

2
2−1)

(2+5  2
2−1)

¸
≤ C

Next, for   = 2°°°Ω−12 22Ω
−12


°°° k22k = |11 ()| k22k () (B.37)

≤ (11+
2


2
−1()+

2
⊥

2
2−1)(1+ 2

2−1)
+[2+5  22−1]2−1()+[


3+


4 

2
2−1] 22−1

≤ (

11+

2
⊥

2
2−1)

+3 
2
2−1

+
(11+2⊥

2
2−1)

3+

4 

2
2−1

+
2(1+ 22−1)
2+


5 

2
2−1

≤ C.

And finally, °°°Ω−12 12Ω
−12


°°° ≤ 
|11()|+|22()|+2|12()|

+[2+5  22−1]2−1()+[

3+


4 

2
2−1] 2

2−1
≤ C.
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Part TD2: 3 () 
0
 for     = 1 2 : Using (B.29),

3 () 
0
 = 2

©
Ω−1Ω

−1
Ω

−1
  (1 0)

ª


0
−1 () 

for     = 1 2 Applying the uniform bounds in (B.36) and (B.37),°°3 () 0°°
≤ C

°°°Ω−12 Ω
−12


°°° kk°°°Ω−12 Ω
−12


°°° kk°°°Ω−12 

°°°°°°(1 0)Ω−12

°°° |−1 ()|
≤ C

°°°Ω−12 

°°°°°°(1 0)Ω−12

°°° |−1 ()| 
Next, rewrite  as

 =
¡
 − 

¢
+  = [(− 0) −1 () + 0 (0 − )2−1] (1 0)

0
+ Ω

12
  (B.38)

Using this,°°°Ω−12 

°°° ≤ 
h°°°(1 0)Ω−12

°°° (|−1 ()|+ |2−1|) + °°°Ω−12 Ω
12


°°° kki (B.39)

≤ 

∙
(22+

2
⊥⊥

2
2−1)

12
(|−1()|+|2−1|)

(+[2+5  22−1]2−1()+[

3+


4 

2
2−1] 22−1)

12 + kk
¸
≤ C [1 + kk] 

where we have used that
°°°Ω−12 Ω

12


°°°2 = 
©
Ω−1Ω

ª ≤ C. Moreover,
°°°(1 0)Ω−12

°°°2 2−1 () ≤ (22+2⊥⊥ 22−1)2+

5 

2
2−1

≤ C (B.40)

Hence we can use V = 1


P

=1 C [1 + kk] since  has finite first order moment.

Part TD3: 3 (   ) for      = 1 2 : By (B.28), we find that the

third order differential is bounded by,°°3 (   )
°° ≤ C °°°Ω−12 Ω

−12


°°° kk°°°Ω−12 Ω
−12


°°° kk×°°°Ω−12 Ω
−12


°°° kk
°°°Ω−12 

°°°2 ≤ C £1 + kk2¤ 
using (B.36), (B.37) and (B.39).

Part TD4: 3 () 
2 : Recall that by (B.27), 2 () 

2 = − ©Ω−111ª 2−1 ()
such that,

3 (   ) = 
n
Ω−1 Ω̇Ω

−1
11

o
2−1 () + 2

©
Ω−111

ª
−1 ()2−1
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Now,
°°°Ω−12 11Ω

−12


°°° 2−1 () ≤ (22+2⊥⊥
2
2−1)2−1()

+[2+5  2
2−1]2−1()+[


3+


4 

2
2−1] 22−1

≤ C, and likewise,
uniformly in K (0), °°°Ω−12 Ω̇Ω

−12


°°° ≤ C (B.41)

using arguments similar to Part S3. Finally, for the last term we have,¯̄

©
Ω−111

ª
−1 ()2−1

¯̄
≤ (22+

2
⊥⊥

2
2−1)|−1()||2−1|

+[2+5  22−1]2−1()+[

3+


4 

2
2−1] 22−1

≤ C

Part TD5: 3 () 
2 : FromPart I3, proof of Lemma B.2, and using that by definition

of Ω we have Ω̇ = 0,

−23 (   ) = −2
n
Ω−1 Ω̈Ω

−1
 ̇

0


o
| {z }

()

− 4
n
Ω−1 Ω̇Ω

−1
 ̇̇

0


o
| {z }

()

+4 
nh

Ω−1 Ω̇

i³
Ω−1 Ω̇

´ £
Ω−1 ̇

0


¤o| {z }
()

+ 4
©
Ω−1 ̇̈

0


ª| {z }
()

−8
n
Ω−1 Ω̇∗Ω

−1
 ̈

0


o
| {z }

()



Using | {}| ≤ kk kk repeatedly, 3 () 2 is uniformly bounded if
°°°Ω−12 

°°°,°°°Ω−12 Ω̇Ω
−12


°°°  °°°Ω−12 Ω̈Ω
−12


°°°  °°°Ω−12 ̇

°°° and °°°Ω−12 ̈

°°° are. For the first two
see (B.41) and (B.39) respectively, and the remaining ones are bounded using similar

arguments.

Part TD6: 3 () 
3 : From Part I3, proof of Lemma B.2, we find as in Part TD5,

that |3 () 3| is uniformly bounded if, as used in Part TD5,
°°°Ω−12 Ω̇Ω

−12


°°° °°°Ω−12 

°°°  °°°Ω−12 Ω̈Ω
−12


°°° and °°°Ω−12 ̇

°°° are.
Part TD7: 3 () 

2 : In addition to the quantities in Part TD5 and Part TD6,

3 () 
2 is uniformly bounded if also

°°°Ω−12 Ω̇Ω
−12


°°°  °°°Ω−12

...
ΩΩ

−12


°°°
and

°°°Ω−12 Ω̈Ω
−12


°°° are. The first term for  = 12 11 and 22 respectively, is dealt

with in Part TD1, while for the last two similar arguments can be used. For example,

with
...
Ω = 0 for  = 12 22, while°°°Ω−12

...
Ω11Ω

−12


°°°2 ≤ 
¡
2 + 2⊥

¢
 2
2−1

n£
Ω−111

¤2o ≤ C
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Part TD8: 3 () 
0
 : Using Part I2, simple calculations give that this is uni-

formly bounded as
°°°Ω−12 Ω̇Ω

−12


°°° (see Part TD1) °°°Ω−12 Ω̈ Ω
−12


°°° (see Part
TD7) as well as

°°°Ω−12 Ω̇Ω
−12


°°°  °°°Ω−12 

°°° and °°°Ω−12 ̇

°°° are (see Part TD5).
Part TD9: 3 ()  : Using Part I5, we again find this is uniformly bounded

as
°°°Ω−12 Ω̇Ω

−12


°°° (see Part TD1), °°°Ω−12 ̇

°°° and °°°Ω−12 

°°° (see Part TD5) are,
together with°°°(1 0)Ω−12

°°°2 ¡ 2
2−1 + 2−1 ()

¢ ≤ (22+2⊥⊥ 22−1)
()

¡
 2
2−1 + 2−1 ()

¢ ≤ C
using (B.35), (B.39) and (B.40). ¥
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