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Abstract

In a recent paper Cavaliere et al. (2012) develop bootstrap implementations of the (pseudo-)
likelihood ratio [PLR] co-integration rank test and associated sequential rank determination pro-
cedure of Johansen (1996). The bootstrap samples are constructed using the restricted parameter
estimates of the underlying VAR model which obtain under the reduced rank null hypothesis. They
propose methods based on an i.i.d. bootstrap re-sampling scheme and establish the validity of their
proposed bootstrap procedures in the context of a co-integrated VAR model with i.i.d. innovations.
In this paper we investigate the properties of their bootstrap procedures, together with analo-
gous procedures based on a wild bootstrap re-sampling scheme, when time-varying behaviour is
present in either the conditional or unconditional variance of the innovations. We show that the
bootstrap PLR tests are asymptotically correctly sized and, moreover, that the probability that
the associated bootstrap sequential procedures select a rank smaller than the true rank converges
to zero. This result is shown to hold for both the i.i.d. and wild bootstrap variants under con-
ditional heteroskedasticity but only for the latter under unconditional heteroskedasticity. Monte
Carlo evidence is reported which suggests that the bootstrap approach of Cavaliere et al. (2012)
significantly improves upon the finite sample performance of corresponding procedures based on
either the asymptotic PLR test or an alternative bootstrap method (where the short run dynamics
in the VAR model are estimated unrestrictedly) for a variety of conditionally and unconditionally

heteroskedastic innovation processes.
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1 Introduction

Sequential likelihood-based procedures for the determination of the co-integration rank in VAR systems
of variables integrated of order 1 [I(1)], see Johansen (1996), are widely used in empirical research.
However, it is now well understood that the finite sample properties of these procedures, when based
on asymptotic inference, can be quite poor; see, in particular, Johansen (2002) and the references
therein. It is also well-known that the bootstrap, when correctly implemented, can be an important
device to compute critical values of asymptotic tests in samples of finite size thereby delivering tests
with empirical rejection frequencies closer to the nominal level. As a consequence, it is not surprising
that there has been an increasing interest in using bootstrap methods in determining the co-integration
rank in vector autoregressive models. For co-integrated VAR models with independent and identically
distributed (i.i.d.) innovations, see, most notably, Swensen (2006) and Cavaliere, Rahbek and Taylor
(2012); for VAR models with potentially heteroskedastic innovations, see Cavaliere, Rahbek and Taylor
(2010a, 20100).

A key feature of the bootstrap algorithms proposed in Swensen (2006) and Cavaliere et al. (2010a,
20100) is that they combine restricted (where the null co-integrating rank is imposed) estimates of the
long-run parameters of the model with unrestricted parameter estimates of the short run parameters
in the bootstrap recursion used to generate the bootstrap sample data. As is recognised in Swensen
(2009), where the null hypothesis imposes a co-integration rank r which is smaller than the true
rank, 7o say, the potential arises for the resulting bootstrap samples to be non-I(1) (they can, for
example, be explosive or admit too many roots on the unit circle), thereby invalidating the use of
the bootstrap, even asymptotically. Swensen (2009) shows that for this not to happen a number of
auxiliary conditions must be imposed on the (unknown) parameters of the data generating process
(DGP).

In a recent paper, for the case of co-integrated VAR models with i.i.d. innovations, Cavaliere
et al. (2012) [CRT hereafter] show that this problem can be solved by considering an alternative
bootstrap scheme where the bootstrap recursion uses parameter estimates of the short run and long
run parameters both of which are obtained under the null co-integrating rank. CRT demonstrate
that even when r < ry these estimates converge to pseudo-true values which ensure that the resulting
bootstrap data are (at least in large samples) I(1) with co-integrating rank r. As a consequence
they show that the resulting bootstrap tests are asymptotically valid, attaining the same first-order
limit null distribution as the original pseudo likelihood ratio [PLR] statistic both when r = ry and,
crucially, when r < rg, without the need for any auxiliary conditions to hold on the underlying DGP.
Given that the PLR statistic diverges when r < ry they then show that this result ensures that the
associated bootstrap analogue of Johansen’s sequential procedure is consistent in the usual sense that
the probability of choosing a rank smaller than the true rank will converge to zero. Like Swensen
(2006), the procedures proposed in CRT are based on an i.i.d. re-sampling scheme.

In this paper we analyse the properties of the bootstrap PLR tests and associated sequential pro-

cedures proposed in CRT in cases where the innovations may display time-varying behaviour in either



their conditional or unconditional variances, of the form considered in Cavaliere et al. (2010a, 2010b).
The former, embodied in a martingale difference assumption, permits, for example, certain types of
GARCH models for the volatility process, while the latter allows, for example, single and multiple
abrupt (co-)variance breaks, smooth transition (co-)variance breaks, and trending (co-)variances. In
our analysis we will consider procedures based on an i.i.d. bootstrap re-sampling scheme, as outlined
in CRT, together with analogous procedures based on a wild bootstrap re-sampling scheme. We show
that the wild bootstrap analogues of the algorithms proposed in CRT are asymptotically valid in both
cases, again attaining the same first-order limit null distribution as the PLR statistic when r < rg,
and again without the need for any auxiliary conditions to hold on the underlying DGP. The same
result is shown to hold for the i.i.d. bootstrap implementation of the algorithms for the conditionally
heteroskedastic case considered. In contrast, in the non-constant volatility case this result is only at-
tainable using the wild bootstrap versions of CRT’s algorithms. These are particularly useful results
since the Bartlett-corrected rank tests of Johansen (2002), which constitute an alternative approach
to the bootstrap to improve the finite sample properties of the tests, are not appropriate when the
errors are heteroskedastic.

The paper is organised as follows. Section [2outlines our heteroskedastic co-integrated VAR model.
Section |3| outlines the pseudo-LR co-integration rank tests and associated sequential procedures of
Johansen (1996), outlining the large sample properties of these under heteroskedastic innovations.
The bootstrap algorithms proposed by CRT are outlined in section [} and here it is briefly shown
how these differ from the corresponding bootstrap algorithms from Swensen (2006). The large sample
properties of the bootstrap procedures under heteroskedastic innovations are established in section
The results of a Monte Carlo study are given in section [6} Section [7] concludes. Mathematical proofs
are contained in the Appendix.

In the following — denotes weak convergence, 2 convergence in probability, and ﬂp weak con-
vergence in probability (Giné and Zinn, 1990; Hansen, 1996), in each case as T' — oo; I(-) denotes the
indicator function; z := y indicates that z is defined by y; |-| denotes the integer part of its argument;
Crmxn[0, 1] denotes the space of m x n matrices of continuous functions on [0, 1]; Dgmx=x[0, 1] denotes
the space of m x n matrices of cadlag functions on [0, 1]; I denotes the k£ x k identity matrix and
0jxk the j x k matrix of zeroes; the space spanned by the columns of any m X n matrix a is denoted
as col(a); if a is of full column rank n < m, then @ :=a (a'a) ' and a, is an m x (m — n) full column
rank matrix satisfying a', @ = 0; for any square matrix, a, |a| is used to denote its determinant, ||a|| the
norm ||al|? := tr{a'a} and p(a) its spectral radius (that is, the maximal modulus of the eigenvalues
of a); for any vector, z, ||z|| denotes the usual Euclidean norm, | z| := (:v’a:)l/Z. Finally, P* de-
notes the bootstrap probability measure, i.e. conditional on the original sample; similarly, £* denotes

expectation under P*.



2 The Heteroskedastic Co-integrated VAR Model

Following Johansen (1996), we consider the case where the p-dimensional observations {X;} satisfy

the kth order reduced rank vector autoregressive (VAR) model

k—1
AXy=af' X1+ Y TiAX, i +ap D+ ¢dy+ey, t=1,..,T (2.1)

i=1
where X; 1= (Xi4, ..., Xpt)', €t := (€14, ...,€pt)", and where the initial values, X;_y, ..., Xo, are taken
to be fixed in the statistical analysis. The deterministic variables are assumed to satisfy one of the
following cases (see, e.g., Johansen, 1996): (i) d; = 0, D; = 0 (no deterministic component); (ii)
D; =1, d; = 0 (restricted constant), or (iii) D; = ¢, d; = 1 (restricted linear trend). The innovation

process {e;} is taken to satisfy one of the following three assumptions:

Assumption V The innovations {e;} are independent and identically distributed with mean zero and

full-rank variance matriz %, and where E ||e||* < K < 0.

Assumption V'’ The innovations {e;} form a martingale difference sequence with respect to the

filtration Fy, where Fy_1 C Fy for t = ...,—1,0,1,2, ..., satisfying: (i) the global homoskedasticity
condition.:
1 X
P,
T ZE (6t6;|.7:t,1) =X >0, (2.2)
t=1

and (ii) E|e* < K < 0.

Assumption V” The innovations {e;} are such that e, = 02z, where z; is p-variate i.i.d., z; ~ (0, I))
with E ||z||* < K < oo, and where the matriz oy is non-stochastic and satisfies o := o (t/T) for
all t = 1,...,T, where o (-) €Drpxp[0,1]. Moreover it is assumed that ¥ (u) := o (u) o (u)' is positive
definite for all u € [0,1].

Remark 1 Assumption V is that considered by Johansen (1996) and Swensen (1996). Assumption V’
is taken from Cavaliere et al. (2010a) and allows for, among other things, models with deterministic
periodic heteroskedasticity and for multivariate versions of the stable GARCH, EGARCH, AGARCH,
GJR-GARCH, and autoregressive stochastic volatility models of the type considered in Gongalves and
Kilian (2004,p.99); see also Section 6. Notice that condition (i) of Assumption V’ imposes neither
strict nor second-order stationarity on e;, but rather imposes a so-called global stationarity or global
homoskedasticity condition; see e.g. Davidson (1994,pp.454-455). Assumption V” implies that the
elements of the innovation covariance matrix X; := 0,0} are only required to be bounded and to
display a countable number of jumps, therefore allowing for an extremely wide class of potential
models for the behaviour of the covariance matrix of ;. Models of single or multiple variance or
covariance shifts, satisfy Assumption V” with X (-) piecewise constant. For instance, denoting the
(4, j)th element of 3(u) by ¥;;(u), the case of a single break at time |77'] in the covariance E (e;.€ ;1)
obtains for ¥;; (u) = Z?j + (Z}j - Z%)H (u > 7). Piecewise affine functions are also permitted, thereby

allowing for variances which follow a (possibly) broken trend, as are smooth transition variance shifts.



The requirement within Assumption V”that o (-) is non-stochastic is made in order to simplify the
analysis, but can be generalised to allow for cases where o (-) is stochastic and independent of z;; see
Remark 2.2 of Cavaliere et al. (2010b) for further details.

In what follows we will often refer to the case where the parameters of (2.1) satisfy the ‘I(1,r)

conditions’. These are formally defined below.

Definition 1 If: (a) the characteristic polynomial associated with (2.1) has p —r roots equal to 1 and
all other roots outside the unit circle, and (b) a and B have full column rank r, then the parameters
in (2.1) will be said to satisfy the ‘I(1,r) conditions’.

Under the conditions given in Definition 1, and coupled with either Assumption V, V’ or V7, X,
is I(1) with co-integration rank r. Here we are using the definition of I(1) adopted by Cavaliere et
al. (2010b6) which is defined such that the common trend component of the data admits a functional
central limit theorem. Under conditions (a) and (b) of Definition 1 and if Assumption V holds, then
the co-integrating relations 8'X; — E (' X;) will then be stationary, while under Assumption 1’ they
will be globally stationary. Under Assumption V", however, stationarity does not hold in general on
the co-integrating relations, due to the time-variation present in o;; nonetheless, 3’ X; — E (5’Xt) is

stable, in the sense that it is free of stochastic trends.

3 Pseudo Likelihood Ratio Tests

The well-known PLR tes‘ﬂ of Johansen (1996) for the hypothesis of co-integration rank (less than
or equal to) r in (2.1, denoted H (r), against H (p), rejects for large values of the trace statistic,
Qrr == —T > P log(1 - Ai), where Ay > ... > j\p are the largest p solutions to the eigenvalue
problem,

|AS11 — S10S59 So1| = 0, (3.1)

where Sj; := T3 /_, Ry, i,j = 0,1, with Ro; and Ry, respectively denoting AX, and (X]_, Dy)’,
corrected (by OLS) for AX;_1,...,AX;_jy1 and d;. The sequential testing procedure based on Q1
involves, starting with » = 0, testing in turn H(r) against H(p) for, r = 0,...,p — 1, until, for a given
value of , the asymptotic p-value associated with @, 7, exceeds a chosen (marginal) significance level.

Suppose that X; in (2.1 satisfies Definition 1 for r = r¢; that is, the true co-integrating rank is rq
and satisfies the I(1, 7o) conditions. Then, under either Assumption )V (see Johansen, 1996) or
Assumption V’ (see, Cavaliere et al., 2010a) it holds that

QT(),T 2) tr(Qro,oo) (3.2)

!By which we mean the test based on the likelihood which obtains under the assumption that ¢; in (2.1) are Gaussian

ii.d. disturbances. The associated estimators from (2.1)) under this assumption will, correspondingly, be referred to as

pseudo maximum likelihood estimators.



where, for a generic argument r,

-1

Qo i= /0 LBy (W) Fy () < /O 1 Fp_T(u)Fp_r(u)'du> /0 B wdBy ) (33)

where Bj,_,(-) is a (p — r)-variate standard Brownian motion, and where either: (i) in the no deter-
ministics case, Fj , := By r; (ii) in the restricted constant case, F}, , := (B,_,, 1)’, or, (iii) in the
> u|1)’, where alb:= a(-) — [ a(s)b(s)'ds([ b(s)b(s)'ds) b(-)

denotes the projection residuals of a onto b. Critical values from these (plvotal) hmltmg null distri-

restricted linear trend case, F,_, := (B]

butions are provided in Johansen (1996). Under Assumption V", however, Cavaliere et al. (2010b)
establish that

Qror =+ tr(Qf) o) (3-4)

where, again for a generic argument r, Qfoo is defined by the right hand side of (3.3 but replacing
the standard Brownian motion, By,_,(u), throughout by the the (p — r)-variate stochastic volatility

process

My, (u) := (OélJ_EaJ_)il/Q o) /u o(s)dBy(s)
0

where ¥ := fo s) ds is the (asymptotic) average innovation variance. This limiting null distribution
is in general non—plvotal, its form depending on the spot volatility process, o(-). Consequently, infer-
ence using the standard trace statistics will not in general be pivotal under Assumption V” if p-values
are retrieved on the basis of the tabulated distributions which apply under Assumptions V and V’.

Under the I(1,79) conditions, and regardless of whether Assumption V, V’ or V” holds, the
ro largest eigenvalues solving , 5\1, .. .,S\TO, converge in probability to positive numbers, while
TS\TOH, e ,Tj\p are of Op(1). Consequently, under any of Assumptions V, V’ or V” the standard
asymptotic test based on @, will be consistent at rate O,(T) if ro is such that o > r. This
implies, therefore, that under either Assumption V or V’ the sequential approach to determining the
co-integration rank outlined above will be consistent in the usual sense that it will lead to the selection
of the correct co-integrating rank with probability (1 — &) in large samples if a marginal significance
level of £ is chosen. However, under Assumption V” this will not in general be true, unless critical
values from the limiting distribution on the right hand side of are used: the standard sequential
approach to determining the co-integration rank will therefore not in general lead to the selection of
the correct co-integrating rank with probability (1 — &) even in large samples.

To conclude this section we detail the large sample properties of the pseudo maximum likelihood
estimates [PMLE] of the parameters of that obtain under H(r) under each of Assumptions V,
V> and V”. To that end, let & := (91,2, ..., i) denote the eigenvectors from (3.1, viz,

’0’811@ = Ip, @18105&)180117 = ]\p = diag(jq, 5\2, veey j\p) . (3.5)

The (uniquely defined) Gaussian PMLE of j, B(T), may then be written as B(r) = ﬁK]()T), where

KI(,T) = (IT,OTX( )) , is a selection matrix indexed by r and p. When deterministic terms are
included, ﬁ (B ) AKI(,_Ql The remaining estimators é{" ),fgr), . ,A,(Ql and <,z$



then obtained by OLS regression, as in Johansen (1996). We denote the PMLE for under H(r)
by 9(7“) — {d(r)ﬂg(r)’fgr)’ “.,’f;ﬂr_)l,ﬁ(r),gb(r),S(r)}'

Under the I(1,7) conditions, Johansen (1996) establishes that under Assumption V, 0" Lo,
where 0 := {a, 5,T'1, ..., [x_1,p, 9, X}. Cavaliere et al. (2010a) show that this result also holds under
Assumption V’, provided X is defined as in (2.2). Under Assumption V", Cavaliere et al. (20100)
prove that, again under the I(1,7y) conditions, @(r) 2 9,, where 0, := {a,8,T1,.... Tk_1,p, 6,5}
with 3 now equal to fo s)ds. Under Assumption V, CRT demonstrate the important additional

(r)

result, which is pivotal to showing the validity of their proposed bootstrap procedure, that when
H(r) imposes a co-integration rank which is smaller than the true rank, r¢ say, such that 9(T) 2 Hér),
where 08” = {agT),,Bgr),I‘gf()], ...,F,@LO,,O((]T),qbgr),Z(()r)} is a vector of pseudo-true parameters which
have the key property that they satisfy the I(1,7) conditions. In section 5 we will show that this
result also holds under either Assumption V’ or V”, allowing us to establish the asymptotic validity
of the bootstrap PLR tests and associated sequential procedure proposed in CRT, adapted to use a

wild bootstrap re-sampling scheme where appropriate, when the innovations are heteroskedastic.

4 Bootstrap Algorithms

In Algorithm 1 we detail the bootstrap implementation of the PLR test for H(r) against H(p). Where

the i.i.d. re-sampling scheme, (a), is adopted in step (iii), this algorithm coincides with Algorithm 1
of CRT.

Algorithm 1:

(i) Estimate model 1’ under H(r) using Gaussian PMLE yielding the estimates B(T), & pr)

fgr), ey f,(:jl and ¢(1")’ together with the corresponding residuals, &; ;.

?

(ii) Check that the equation |A() (z) | = 0, with A7) (2) := (1 — z) [,—a&(" o, _ Zk T I‘ ( —2) 2,

has p — r roots equal to 1 and all other roots outside the unit circle. If so, proceed to step (iii).

(iii) Construct the bootstrap sample recursively from
< ("
~(r
AX; =a"B X Z X5+ 6D+ ¢ dy ey, t=1,.,T  (4.1)
initialised at X', = Xj, j = 1—k,...,0, and with the T bootstrap errors ;. ; generated using the
re-centred residuals, é‘ﬁ,t =&y — 71 Z?zl Er,, for either:

(a) the iid. bootstrap, such that €7, := &7, , where Uz, t = 1,...,T is an ii.d. sequence of

discrete uniform distributions on {1,2,...,T'}, or

- — * . ac _ 3
’ - ) ’ T bl bl - 70 Y
(b) the wild bootstrap, where for each t = 1,...,T, e7, := & ywi, where wy, t = 1,...,T, is an

i.i.d. N(0,1) sequence.



(iv) Using the bootstrap sample, {X;;}, and denoting by AL> > 5\; the ordered solutions to
the bootstrap analogue of the eigenvalue problem in (3.1]), compute the bootstrap LR statistic

vy = —T Sy log(1 — )\:) Define the corresponding p-value as p} = 1 — G} 1 (Q,1),
»r(+) denoting the conditional (on the original data) cdf of @} ;.

(v) The bootstrap test of H(r) against H(p) at level n rejects H(r) if p;, < 7.
Remark 2 The recursive scheme in (4.1) differs from the corresponding bootstrap recursion in

Swensen (2006) and Cavaliere et al. (2010a, 2010b) which takes the form

k-1

Ax;, =amB' Xz, STPAXE L+ a0 D, + ¢V di 2l t =1, T (4.2)
i=1
where fgp), .. .,fgfjl and gﬁ(p) are now the estimates of the short run matrices I'y,..., 'y and ¢,

respectively, from estimating unrestrictedly, i.e. under H (p). This difference is crucial since
showing that the bootstrap test of H(r) is consistent when r < r(, requires that the bootstrap
data still satisfy the I(1,7) conditions in large samples. As acknowledged in Swensen (2009), this is
not guaranteed, even asymptotically, when using the recursion in , unless a number of auxiliary
restrictions, labelled Assumption 2 in Swensen (2009), hold on the parameters of ; see also Remark
6 of CRT. CRT show that these restrictions are not needed if the bootstrap recursion in (4.1)) is used
since it always delivers an I(1) system with r < ry co-integrating vectors in the limit, regardless of

the true co-integration rank, rq.

Remark 3 Although, as CRT show, Algorithm 1 without the inclusion of step (ii) ensures that the
bootstrap data satisfy the I(1,7) conditions in the limit, this could fail in small samples. Consequently,
the role of step (ii) is to check that the bootstrap samples will indeed be I(1) with co-integration rank
r. Unreported simulations for the case where we continue to step (iii) of Algorithm 1 regardless of
whether the root check condition in step (ii) is failed or not suggest, reassuringly, that this leads to no
deterioration in the finite sample performance of the resulting bootstrap tests relative to the results
reported here. Analogous conditions to those in step (ii) are also checked in step (iii) of Algorithm 1
in Swensen (2006) for the recursion in (4.2). Notice that step (ii) will be failed with probability one
in Algorithm 1 of Swensen (2006) unless Assumption 2 of Swensen (2009) is satisfied.

Remark 4 In practice, the cdf G} 1-(-) required in Step (iv) of Algorithm 1 will be unknown, but
can be approximated in the usual way through numerical simulation; see, inter alia, Hansen (1996),
Davidson and MacKinnon (2000) and Andrews and Buchinsky (2000). This is achieved by generating
B (conditionally) independent bootstrap statistics, Q;"T:b, b=1,..,B, computed as in Algorithm 1
above. The simulated bootstrap p-value is then computed as p; ;. := B! Zle Q1 > Qrr), and

is such that p; . g prp as B — oo.

We conclude this section by outlining in Algorithm 2 the bootstrap sequential algorithm for de-
termining the co-integrating rank. Again for re-sampling scheme (a) in step (iii) of Algorithm 1, this

replicates Algorithm 2 of CRT.



Algorithm 2: Starting from r = 0 perform the following steps:
(i)—(iv) Same as in Algorithm 1.

(v) If p; 7 exceeds the significance level, n, set # = r, otherwise repeat steps (i)—(iv) testing the null

of rank (r + 1) against rank pif r+1 <p,orset 7 =pifr+1=p.

5 Asymptotic Analysis

CRT establish the large sample behaviour of the PLR tests and associated sequential procedure from
Algorithms 1 and 2 respectively, for any I(1) DGP satisfying the conditions stated in Swensen (2006).
These conditions are comprised of those made for the standard asymptotic test in Johansen (1996),
Assumption 1 below and Assumption V, coupled with the additional assumption from Swensen (2006,
Lemma 3), stated as Assumption 2 below, that eigenvalues from (3.1) are distinct in the limit. Cru-
cially, CRT show that the asymptotic validity of their bootstrap procedures do not require any further

conditions, such as Assumption 2 of Swensen (2009), to hold.
Assumption 1 The parameters in (1) satisfy the I(1,rg) conditions.
Assumption 2 The limiting non-zero roots of (3.1)) are distinct.

Precisely, CRT demonstrate that, under Assumption ¥V and Assumptions 1 and 2, for any r < rg,
;T E>p tr(Qr o0), where Q, o is as defined in , for the case where the i.i.d. bootstrap re-sampling
design is used in step (iii) of Algorithm 1. It is straightforward to show that the same result holds
where the wild bootstrap is used in step (iii) of Algorithm 1; indeed this results follows as a special
case of the results given below noting that Assumption V is a special case of both Assumption V’ and
Assumption V”. An immediate consequence of this result and the results previously detailed for the
asymptotic PLR tests, is that the bootstrap test based on Q;T will be asymptotically correctly sized
under the null hypothesis (r = ry), and will be consistent for all » < rp; that is, Pro.r L Uo,1] an
p;T =1- G;T (Qr1) 2 0, for all r < rg. CRT show that these results obtain by virtue of the fact
that under Assumption V the PMLE, 9(r), used to generate the bootstrap samples in Algorithm 1
asymptotically satisfies the I(1,r) conditions, even when an incorrect rank r < ry is imposed.
Our aim in this section is to prove that the bootstrap PLR tests from Algorithm 1 are also
asymptotically valid under either Assumption V’ or Assumption V7, i.e. that they are asymptotically
correctly sized under the null and consistent under the alternative in the presence of heteroskedasticity

in the innovationsﬂ In the light of the results in CRT it is clear that in order to do so we must first

2Notice that if the p-value of a test converges in large samples to a uniform distribution on [0,1] under the null
hypothesis, then for any chosen significance level 7, as the sample size diverges the probability of rejecting the null

hypothesis converges to 7; i.e., the test has asymptotic size 7, as required.
8Tt is worth noting that the large sample results that we establish for the wild bootstrap version of Q.7 in this

section are obtained under weaker conditions than were required in Cavaliere et al (2010b) who, in deriving the large
sample properties of their proposed wild bootstrap test, additionally required the innovations, 2z, in Assumption V” to

be symmetrically distributed.



establish that 9(T) also satisfies the I(1,r) conditions in the limit, even when an incorrect rank r < r

is imposed, under both Assumption V’ and V”. This is done in Lemma 1.

Lemma 1 Let {X,;} be generated as in under Assumptions 1, 2 and either V’ or V”. Then:
(i) for any r < rg and as T — 00, 9(T) 2 HE)T), with the vector of pseudo-true parameters, ng) =
{a , 0 , gr()), F,(C 100 P ,qSO , ((]T)}, defined in the Appendiz; and (ii) the pseudo-true parameters

Hg satisfy the I(1,7) condztzons.

An important consequence of Lemma 1 for the bootstrap recursion in (4.1)) is stated in the following
proposition, which establishes that for any » < 7y the bootstrap sample generated by (4.1]) is (1)

with co-integration rank r in large samples.

Proposition 1 Let {X,;} be generated as in under Assumptions 1 and 2, and let the bootstrap
sample be generated as in Algorithm 1, for any r < rg. Then the following results hold:
(i) Under either Assumption V'’ or V7, and for either the i.i.d. or wild bootstrap re-sampling design

in step (ii1) of Algorithm 1,
t

Xr = ¢ Z Erit Tt + SpaT"? (5.1)
i=1
where C(T B 5 & with 10 = ]?:_1 pir I, and where S,; is such that
J_ J_ a; i=1 “ 1 >

P* (maxt:17,,,7T ||S’,~7t|| > e) 20 for all € > 0. If there are either no deterministics or a restricted
constant in (i.e. cases (i) and (ii)), then %rt = 0 while in the restricted linear trend case
(case (m)) T_17A'T LTUJ = Tgr)u where TE)T) = C qbo + (C )FE)T) - )B(()T)pg")', where C’(()T) =
ﬁM( ﬁM) am_l is of rank (p —r) > (p — ro), and where I‘( ") = Zk II’( ) — 1.

(i) Under Assumption V’, for either the i.i.d. or wild bootstrap re-sampling design in step (iii) of

Algorithm 1,
Tl
T 1200 3 e B, W, (), we0,1] (5.2)
=1
(r) (r)

where Wy, is a p-dimensional Brownian motion with covariance matriz y’, and where C,

defined in part (i).

1S as

(11i) Under Assumption V7, for the wild bootstrap re-sampling design in step (iii)(b) of Algorithm 1

only,
[Tu)

200 N er B, O M (u), we[o,1], (5.3)
i=1
where the p-variate stochastic process is given by, M (-) = [; o (s)dBy (s), with B, a p-dimensional

(r)

standard Brownian motion, and Cy’ is again as defined in part (i).

Remark 5 The proof of Proposition 1 exploits the fact that, by Lemma (i), for any rank r < rg
the bootstrap recursion in (4.1 coincides, in the limit, with the recursion AXy, = oz(()r) ,BE)T)’X;‘,t_l +
Zk 1 FEO)AX;‘ .+ 04(() )p((] D, + ¢ dt + €+ which, by Lemma (ii), satisfies the I(1,r) conditions.
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This property implies that the bootstrap sample is asymptotically I(1) with r co-integrating relations,
as the results in ((5.2) and (5.3) coupled with (5.1)) formally establish under Assumptions V’ and V7,

respectively.

Using Lemma 1 and Proposition [I} we now establish the asymptotic behaviour of the bootstrap
trace statistic @y, of Algorithm 1 under either Assumption V’ or Assumption V”. The stated results

hold for any r < ry.

Proposition 2 Let the bootstrap statistic Q’;’T be generated as in Algorithm 1. Then, under the
conditions of Lemma 1, and for any r < ro: (i) if Assumption V'’ holds, then Qrr ﬂ>p tr(Qr00), where
Qr.oc @5 as defined in , with this result holding regardless of whether the i.i.d. or wild bootstrap
re-sampling design is used in step (i11) of Algorithm 1; and (ii) if Assumption V” holds, then provided
the wild bootstrap is employed in step (iii) of Algorithm 1, Qrr ﬂp tr(Q{%}oo) where QF __is as defined

70,00
below (3.4)).

Remark 6 An immediate consequence of Proposition 2 is that under either Assumption V’ or
Assumption V7, the wild bootstrap test based on Q. will be asymptotically correctly sized under
the null hypothesis (r = r¢), and will be consistent for all r < rg. This follows from the results
noted in section 3 that Q,, it tr(Qry,00) under Assumptions 1 and V’ while @, 7 2 tr(Q,{ﬁyoo) under
Assumptions 1 and V", and that @), 1 diverges at rate T rate when r < r¢. In view of this, when the wild
bootstrap is employed in step (iii) of Algorithm 1, then Dy % Ulo,1] and prpi=1-Glp (Qr1) 20,
for all » < rg. This result therefore holds for the wild bootstrap under Assumptions V, V’ and V”.
The same result holds for the i.i.d. bootstrap under Assumptions V and V’, but not under V”.

We conclude this section by stating the following corollary of Proposition 2 which shows that the
bootstrap sequential procedure in Algorithm 2 is consistent. The stated result holds for both the i.i.d.
and wild bootstrap-based implementations of Algorithm 2 under Assumption V’, but only holds for

the wild bootstrap variant under Assumption V7.

Corollary 1 Let 7 denote the estimator of the co-integration rank as obtained in Algorithm 2. Then,
under the conditions of Proposition 1: limy_,o P (7 =1) =0 forallr =0,1,...,79—1; limp_, o P (7 = 19)

=1-—n-1I(ro <p), and lim sup P(r=r)<n.
TﬂoorE{rg#»L...p}

6 Numerical Results

Using Monte Carlo simulation we now turn to an investigation of the finite sample performance of
the bootstrap procedures based on restricted estimates of the short-run parameters, as detailed in
Algorithms 1 and 2 of Section 4. Results are reported for both the i.i.d. and wild bootstrap versions
of the re-sampling scheme in step (iii) of the algorithms. These algorithms are also compared with

the corresponding asymptotic procedures of Johansen (1996), and with bootstrap algorithms based
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on unrestricted estimates of the short-run parameters; see Swensen (2006) for the i.i.d. re-sampling
scheme, and Cavaliere et al. (2010a, 2010b) for the wild bootstrap re-sampling scheme.

As our simulation DGP we consider the following VAR(2) process of dimension p = 4,
AX, = OAIBIXt_l +TAX 1 +e, t=1,....T (61)

with ¢; a martingale difference sequence (see below), Xo = AXy = 0, and 7" € {50,100,200}. The
long-run parameter vectors are set to 8 = (1,0,0,0)" and « = (a,0,0,0)" (the case of no co-integration
obtains for a = 0). Regarding the innovation term, and following van der Weide (2002), and assume
that ¢, may be written as the linear map ¢, = Aey, where A is an invertible p x p matrix which is
constant over time, while the p components of e; := (eiy, ..., ep)" are independent across i = 1,...,p.
In the case where the individual components follow a standard GARCH (1,1) process (as is the case
with Model C below), the process is known as GO-GARCH (1,1). Notice that, by definition, the PLR
statistic does not depend on the matrix A, as the eigenvalue problem in has the same eigenvalues
upon re-scaling (as can be seen by simply pre- and post-multiplying by A~! in (3.1))). This allows us
to set A = I, in the simulations, with no loss of generality.

In the context of we consider for the individual components of e; the univariate innovation
processes and parameter configurations used in Section 4 of Gongalves and Kilian (2004) and in section

5 of Cavaliere et al. (2010b), to which the reader is referred for further discussion. These are as follows:
e Case A. ¢, i =1,...,p, is an independent sequence of N (0,1) variates

e Case B. ¢, 7 =1,...,p, is an independent sequence of Student ¢ () (normalised to unit variance)

variates. Results are reported for v = 5.

e Case C. ¢;; is a standard GARCH (1,1) process driven by standard normal innovations of the
form e; = h,;t/gvit, i = 1,...,p, where vy is i.i.d. N(0,1), independent across i, and hy =

w+ dge%t_l + dihjt—1,t=0,...,T. Results are reported for dg = 0.05 and d; = 0.94.

e Case D. ¢;; is the first-order AR stochastic volatility [SV] model: e;; = vizexp (hit), hy =
Mhig 1 + 0.5¢,,, with (&4, v4)" ~ ii.d. N(O,diag(og, 1)), independent across i = 1, ..., p. Results
are reported for A = 0.951, o, = 0.314.

e Case E. ¢;; is a nonstationary, heteroskedastic independent sequence of NV (0, J?t) variates, where
02 =1fort < |T7] and 0% =k for t > |T'7|, all i = 1,...,p. Results are reported for 7 = 2/3

and k = 3 (late positive variance shift).

Notice that cases A and B satisfy Assumption V (i.i.d. shocks). Under case C, for the chosen
parameter configuration, ¢; is globally stationary with finite 4th order moments and, hence, satisfies
Assumption V’. Similarly, the SV model of Case D is strictly stationary with bounded 4** order
moments, see Carrasco and Chen (1992) and, hence, satisfies Assumption V’. Finally, Case E implies
a single, permanent shift in the innovation variance; the resulting error sequence is therefore globally

heteroskedastic and satisfies Assumption V7.
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The reported simulations were programmed using the rnd KMn pseudo-Gaussian random number
generator function of Gauss 9.0. All experiments were conducted using 10,000 replications. For the
bootstrap tests, any replications violating the root check conditions (step (ii) in Algorithms 1 and 2
and step (iii) in Algorithms 1 and 2 of Swensen, 2006) were discarded and the experiment continued
until 10,000 valid replications were obtained. For each bootstrap procedure we report the frequency
with which such violations occurredﬁ The number of replications used in both the i.i.d. and the
wild bootstrap algorithms was set to 399. All tests were conducted at the nominal 0.05 significance
level. The VAR model was fitted with a restricted constant when calculating all of the tests. For
the standard PLR tests the asymptotic critical values used were taken from Table 15.2 of Johansen
(1996).

We first in section 6.1 consider the case of no co-integration, setting a = 0.0, and then turn in

section 6.2 to the case of a single co-integration vector, setting a = —0.4.

6.1 The no co-integration case (5 = 0)

In the non-co-integrated case, reduces to the VAR(1) in first differences, AX; = TAX;_1+4e, t =
1,...,T. As in Johansen (2002, section 3.1), we set I'y := I, so that the I(1,r) conditions are met
with r = 0, provided |y| < 1. Results are reported for v € {0.0,0.5,0.8,0.9}.

We first consider the size of the asymptotic PLR test and the various bootstrap analogue tests for
r = 0. The bootstrap tests from section 5 of this paper are denoted by Qo1 (asymptotic test), 3‘1}1
(Algorithm 1, i.i.d. re-sampling), or (Algorithm 1, wild re-sampling), while the bootstrap tests based
on unrestricted estimation of the short-run parameters, as originally proposed by Swensen (2006) and
Cavaliere et al. (2010a,b) are denoted by nggd and Qg’y, respectively. Empirical rejection frequencies
[ERF's] of these tests for » = 0 for case A (i.i.d. Gaussian shocks) and case B (i.i.d. ¢ (5) shocks), are

reported in Tables 1.1 and 2.1 respectively.
[ TABLES 1.1, 1.2, 2.1, 2.2 ABOUT HERE |

It is seen from the results in Tables 1.1 and 2.1 that the standard asymptotic test for r = 0,
Qo,1, displays very poor finite sample size control. Even in the simplest case where v = 0 and the
shocks are Gaussian, the ERF is around 19% for 7' = 50, improving somewhat to around 8% for
T = 200. However, as -~y increases, size control deteriorates markedly; for instance, when v = 0.9 the
size of the asymptotic test exceeds 93% when T = 50, and is still as high as 45% for T = 200. In
contrast, the ERFs of the bootstrap tests, Q;:i%d and QS:?, all lie very close to the nominal 5% level.
The test based on wild bootstrap re-sampling, QS%, appears to be slightly more conservative than
its i.i.d. analog, Q;:gd: for Gaussian shocks and v = 0, Q;:i}d has size ranging from 4.6% (T = 50)
to 4.9% (T = 200), while the wild bootstrap test Q3:¥ has size ranging from 3.2% (T = 50) to

4.4% (T = 200) in this setting. Interestingly, when v = 0.9, Qg controls size extremely well, both

“The Gauss procedure for computing the bootstrap algorithms is available from the authors upon request.
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under Gaussian and ¢(5) errors; for example, in the Gaussian case, when T' = 50, Q3:¥ has size 7.1%
while szgd has size around 11%. In line with the results in CRT, and for the simulation DGPs
considered here, the bootstrap PLR tests based on Algorithm 1 are seen to be clearly preferable to
the corresponding bootstrap PLR tests based on unrestricted estimates of the short run parameters.
In the final example above the i.i.d. bootstrap test of Swensen (2006), Q;:gd, has an ERF of around
30%, while the corresponding ERF for the wild bootstrap analogue of Cavaliere et al. (2010a, 20100),
Q;:;, is about 25%. This illustrates the substantial improvements in size control that can be obtained
by estimating all the parameters restrictedly, i.e. by imposing the null rank being tested.

The associated results for the sequential procedures are reported in Table 1.2 (Gaussian shocks)
and Table 2.2 (¢(5) shocks). Since all of the tests were run at the (asymptotic) 5% significance level
and the DGP satisfies Assumption V, both the standard asymptotic sequential procedure and all of the
bootstrap sequential procedures should (in the limit) select » = 0 with probability 95% and r > 0 with
probability 5%. As with the results in Tables 1.1 and 2.1, among the various algorithms considered,
Algorithm 2 of CRT again appears to deliver the best performance in terms of its ability to select the
true co-integration rank, rg = 0. Of the two re-sampling options within step (iii) of this algorithm,
the procedure based on i.i.d. re-sampling appears to be slightly more liberal than its wild bootstrap
analogue, which is extremely accurate, even for large values of +.

Finally, comparing the results in Tables 1.1 and 2.1 and the results in Tables 1.2 and 2.2, it is seen
that, for a given PLR test and associated sequential procedure, the results appear little affected by

whether the shocks are Gaussian or ¢ (5) distributed.
[ TABLES 3.1, 3.2, 4.1, 4.2 ABOUT HERE ]

We now consider the corresponding results for the two (stationary) conditionally heteroskastic
processes specified in cases C (independent stationary GARCH(1,1) processes) and D (stationary
autoregressive stochastic volatility processes) above. Results for the tests of » = 0 are reported in
Tables 3.1 (case C) and 4.1 (case D). In both cases, the standard asymptotic test is seen to be massively
oversized: for example, when the shocks follow a SV process, even for T' = 200 the size of Qo7 ranges
between 26.9% (v = 0) and 55.7% (y = 0.9). Of the two stationary conditionally heteroskedastic shock
processes considered, it is the autoregressive stochastic volatility case, Case D, which has the strongest
impact on the size of the asymptotic PLR test, this because the chosen parameter configuration implies
relatively strong serial dependence in the conditional variance of the innovations.

In the GARCH(1,1) case, the bootstrap i.i.d. test from Algorithm 1, szi}d, displays very accurate
size controls: the ERF's associated with this test are little different from those observed in cases A and
B (i.i.d. shocks). Overall, the wild bootstrap test of Algorithm 1, Q;:;, although slightly undersized
under for small values of v, does an excellent job, in particular for the larger values of 7y considered.
It is, however, where the innovation process follows a SV process (case D) that the benefits of the
wild bootstrap tests over the other tests become clear. Under case D, the size properties of the i.i.d.

bootstrap test, QS’;d, although representing an improvement over the asymptotic test, are still largely
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unsatisfactory; for T = 200, the ERFs are all still above 17%. Conversely, the ERFs of its wild
bootstrap analogue, QS’?, are all very close to the nominal 5% level, even for small T' and large +.

As was seen for the i.i.d. cases A and B, the bootstrap LR tests Q;:i}d and Q;:¥ have much better

size than the corresponding bootstrap tests of Swensen (2006), Ngzgd, and Cavaliere et al. (2010a,
20100), Q;; This is particularly in evidence for the larger values of v considered. For example, in
the case of GARCH shocks (SV shocks), T = 50 and v = 0.9, the wild bootstrap test QS’¥ has size
of 26.5% (28.9%), while the test based on the wild bootstrap version of Algorithm 1, Q;:;, has size of
6.7% (7.6%).

Turning to the associated results for the sequential procedures, see Table 3.2 (case C) and Table
4.2 (case D), it is again the version of Algorithm 2 which employs the wild bootstrap re-sampling
scheme in step (iii) that has the best available performance for the simulation DGPs considered here
in terms of its probability of selecting the true rank ro = 0. The version of Algorithm based on the i.i.d.
re-sampling in step (iii), while performing well under GARCH errors, is misleading in the presence of
SV: for example, when T' = 200 it detects one (or more) co-integration relation at least 16% of the
time. Conversely, the wild bootstrap version of Algorithm 2 turns out to perform particularly well for

all values of v considered.
[ TABLES 5.1, 5.2 ABOUT HERE |

We now turn to the case of non-stationary heteroskedasticity by reporting, in Tables 5.1 and 5.2,
the results for the case of a one-time change in volatility occurring in each of the p errors e;; (Case
E). This process satisfies Assumption V” with o (-) a non-constant step function and, hence, both the
asymptotic PLR tests and the bootstrap PLR tests based on i.i.d. re-sampling would be expected to
be unreliable; see Cavaliere et al. (2010b). Conversely, we expect from Proposition [2 above that the
bootstrap tests based on wild re-sampling will be approximately correctly sized.

The ERFs reported in Tables 5.1 are indeed in line with our theoretical results. Specifically, under
a one-time change in volatility the asymptotic test, Qo 7, is extremely unreliable in terms of size. The
bootstrap PLR test from Algorithm 1 based on i.i.d. re-sampling, (’fij@, is also unreliable, with size
ranging from 25.6% (when v = 0.9) to 34% (when v = 0) for T' = 200. Conversely, the size properties
of the wild bootstrap PLR test from Algorithm 1, Q(’gf}, seem largely satisfactory. A significant degree
of finite sample oversize can, however, occur when 7' = 50, although these distortions substantially
reduce as the sample size increases; for example, when v = 0.9 (y = 0), Qg has size of 12.3%
(10.1%), reducing to 6.7% (7.1%) for T = 200. It is also worth noting that Q% performs considerably
better than the corresponding wild bootstrap test (based on unrestricted estimation of the short run
parameters) proposed in Cavaliere et al. (2010a, 20100), ~(’§’WT. For example, for T' = 50 the size of
Q’(j“% is about 28.3% (17.9%) when v = 0.9 (v = 0), while for 7" = 200, the size of Q’(;WT is about 11.1%
(8.7%) when v = 0.9 (v = 0).

The superiority of the bootstrap procedures based on restricted estimation are further confirmed

by the sequential results reported in Table 5.2. Consistent with the results in Table 5.1, the procedure
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based on the bootstrap ’;V} tests gets considerably closer to selecting the true rank with frequency
95%. Conversely, both the standard procedure based on Q.7 and the bootstrap procedure based
on i.i.d. re-sampling of the residuals, perform very poorly. It is also worth noting that, for all the
sample sizes considered and for all values of v considered, the wild bootstrap version of Algorithm 2
again performs substantially better than the sequential procedure outlined in Cavaliere et al. (2010a,
2010b), with the latter tending to detect co-integration too frequently in finite samples.

We conclude this subsection by examining the percentage of times the bootstrap algorithms fail
to generate I(1) samples, hence violating the root check conditions (either step (ii) in Algorithm 1 or
step (iii) in Algorithm 1 of Swensen, 2006, as appropriate).lﬂ It can be observed that such percentages
are quite low across all models considered. Some violations occur when volatility is persistent (cases D
and E) and T' = 50, but other things being equal the frequency of such failures decreases rapidly as the
sample size becomes bigger. Overall, CRT’s Algorithm 1 generates fewer explosive samples than the
corresponding algorithms in Swensen (2006) and Cavaliere et al. (2010a, 20105). The only exception is
Case E with T small and v large. As far as the sequential algorithms are considered, CRT’s Algorithm
2 never generates more failures of the root check condition than the corresponding algorithms from
Swensen (2006) and Cavaliere et al. (2010a, 2010b) and, hence, we believe it is preferable to these
procedures not only in terms of its ability to detect the true co-integration rank, but also in terms of

how frequently it generates I(1) bootstrap samples.

6.2 The co-integrated case (1o = 1)

We now consider the VAR(2) in (6.1) with the long-run parameter vectors set to 8 = (1,0,0,0)’,
a = (a,0,0,0)" and with a = —0.4. As in CRT, the lagged differences matrix I'; is specified as

Fl =

S O o =2

b 0
v 0
0 ~
0 0

=2 O o O

with v = 0.8 and ¢ € {0,0.1,0.2,0.3}. For all of these parameter combinations, X; is I(1) with co-
integrating rank 7o = 1. As in CRT, the role of the parameter ¢ is to isolate the violation or otherwise
of the auxiliary conditions given in Assumption 2 of Swensen (2009); in particular, these conditions are
satisfied only for 6 = 0 or 6 = 0.1. As described in CRT, footnote 4, the bootstrap tests for r = 0 in
Swensen (2006) and Cavaliere et al. (2010a, 2010b) are able to generate I(1,0) bootstrap samples only
for |§] < 0.2. For 6 > 0, these bootstrap algorithms generate explosive processes with non-negligible

probability, even as T' get large.

®Since steps (i) and (ii) of Algorithm 1 do not depend on the method used to re-sample the residuals (i.i.d. or wild

*

bootstrap re-sampling), the number of root check violations associated with Qofde and Q" will be identical and are
therefore reported only once. The same equivalence applies to the tests QE‘,“{} and QSWT of Swensen (2006) and Cavaliere
et al. (2010a, 2010b). This feature does not hold for the sequential procedures, however, since algorithms that tend to

select higher values of the co-integration rank will necessarily perform a larger number of root checks.
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[ TABLES 6.1, 6.2, 7.1, 7.2 ABOUT HERE |

For i.i.d. shocks, the ERFs of the tests for » = 1 are reported in Tables 6.1 (Gaussian shocks) and
7.1 (t(5) shocks). It is seen from these results that the standard asymptotic test for r = 1, Qi 7,
again displays very poor finite sample size control. For instance, for both Gaussian and ¢ (5) shocks,
the ERFs are around 46% for T' = 50 and still around 13% for 7' = 200. In contrast, the ERFs of
the bootstrap tests, inj@ and Q’l"“{p, from Algorithm 1 all lie very close to the nominal 5% level, even
for T = 50 (with 17 again being marginally conservative). In line with what was observed for the
ro = 0 case in section 6.1, Q’{:i}d and QT; are better sized than the corresponding bootstrap tests of
Swensen (2006), ~>{:gd, and Cavaliere et al. (2010a, 20100), QT:;, both of which are too liberal, with
size of around 10% in many cases.

The bootstrap tests obtained from Algorithm 1 also have good properties in terms of empirical
power. The ERFs of the i.i.d. variant for r = 0, Q’g{ij‘}, are in most cases not lower than those of
Swensen’s bootstrap Q(’;t‘ﬁ test. The only exceptions occur for § = 0,0.1 when T' = 50 where the

empirical power of ngiﬁ is slightly inferior to that of Q’é“ﬁ However, this is largely an artefact of the

severe over-sizing of QS“Td under the null hypothesis r = 0 (Q’é“j«i has size over 19% when § = 0 and
r =0 for T'= 50; cf. Tables 1.1 and 2.1 for y = 0.8). Turning to the wild bootstrap version of the test,
the ERFs of the Qg test for r = 0, although only slightly lower than the ERFs of the Q’é{ijﬂl test, are
always higher than that of the wild bootstrap Q(’;,WT test of Cavaliere et al. (2010a, 201056). Similarly,
while it might appear on a first reading of the results in Tables 6.1 and 7.1 that the asymptotic Qo1
always displays higher power than the corresponding bootstrap tests, this is again an artefact of its
poor size control. To illustrate, for T' = 50, rank 1 and i.i.d. Gaussian shocks (Table 6.1, entry 6 = 0),
the ERF of, for example, the wild bootstrap Qg% test is 50.8%, while the ERF of the asymptotic
Qo test is 97.6%. However, if we look at the corresponding size results (cf. Table 1.1 for v = 0.8)
it can be clearly seen that under the null hypothesis of rank zero, while the Qg% test has an ERF of
around 5.5%, very close to the nominal level, the Qo1 test has an ERF of 80.2%, grossly in excess of
the nominal level.

Tables 6.2 and 7.2 report the associated results for the sequential procedures. Overall, among the
various procedures considered, Algorithm 2 based on i.i.d. re-sampling appears to deliver the best
performance in terms of its ability to select the true co-integration rank, rg = 1, followed by its wild
bootstrap version. As expected, Algorithm 2 is not affected by the value of d, whereas in contrast it
is clearly seen that the behaviour of the sequential algorithms of Swensen (2006) and Cavaliere et al.
(2010a, 2010b) are strongly affected by the value of .

As with the results in section 6.1, it is seen that, for a given PLR test and associated sequential
procedure, the finite sample behaviour appears little affected by whether the shocks are Gaussian or
t (5) distributed.

[ TABLES 8.1, 8.2, 9.1, 9.2 ABOUT HERE |
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We now turn to cases C (independent stationary GARCH(1,1) processes) and D (stationary
stochastic volatility processes). As was also observed in section 6.1 for the non-co-integrated DGP, the
standard asymptotic PLR test is massively oversized, in particular under SV where even for T' = 200,
the size of Q.7 is about 25%. While the corresponding i.i.d. bootstrap test from Algorithm 1, Q’{:;d,
delivers very accurate size control in the GARCH(1,1) case, under case D the size properties of this
test deteriorate, although they are still significantly better than those associated to the asymptotic
test. Conversely, the ERF's of the wild bootstrap Q’{g test (which is only marginally undersized under
GARCH shocks), are all very close to the nominal 5% level, even for the smaller values of 7" and for all
the values of § considered. As in the two i.i.d. shock cases, the Q’{:;d and Q’{’; bootstrap tests from
Algorithm 1 display superior size control than the corresponding bootstrap tests of Swensen (2006),
~>{:i:ipd, and Cavaliere et al. (2010a, 20100), Q’{:W, which are again far too liberal.

In terms of empirical power, it can be seen that the Qgﬁd and ng¥ tests from Algorithm 1 perform
well with respect to their ngj‘j and QS?’VT counterparts. There are only a few cases where the latter
display higher rejection rates and these occurrences can be explained by the degree of over-sizing
present in the latter.

Turning to the sequential procedures, see Table 8.2 (case C) and Table 9.2 (case D), it can be clearly
seen that Algorithm 2 delivers the best results overall. As in the rg = 0 case, the implementation of
Algorithm 2 which employs i.i.d. re-sampling, while performing best in the presence of GARCH errors
and T = 50, appears to be dominated by Algorithm 2 with wild bootstrap re-sampling when 7' = 100
and T' = 200. In addition, although asymptotically valid, in finite samples i.i.d. re-sampling tends to
selection too many co-integrating relations; for example, in the SV case even when T' = 200, it selects
r = 1 only around 85% of the time, while its wild bootstrap analogue selects = 1 at least 93% of the
time. For all of the parameter configurations considered, the two versions of Algorithm 2 (i.i.d. and
wild) of dominate their counterparts in Swensen (2006) and Cavaliere et al. (2010a, 2010b), even for
0 =0and 6 =0.1.

We now compare, for cases A-D, the frequency with which the bootstrap recursions fail to generate
valid I(1) bootstrap samples. Taking the sequential procedures under i.i.d. shocks (cases A-B) to
illustrate, the percentage of times Algorithm 2 generates explosive bootstrap samples is remarkably
small; in particular, it never exceeds 0.3%, 0.2% and 0.1% for T' = 50, 100 and 200, respectively. In
contrast, Algorithm 2 of Swensen (2006) and the corresponding sequential wild bootstrap algorithm
of Cavaliere et al. (2010a, 2010b) display a much higher number of failures of the I(1,r) conditions,
even when they are asymptotically valid (6 = 0.0 or § = 0.1). For instance, when T' = 50 (T' = 100)
and & = 0.1, explosive bootstrap samples are generated more than 8% (2%) of the time. For I(1)

DGPs with § > 0.2, this failure rate increases substantially; e.g. when § = 0.3 explosive samples are
generated about 50% (92%) of the time for 7' = 50 (T = 200).

[ TABLES 10.1, 10.2 ABOUT HERE |
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We conclude this section by looking at the case of non-stationary heteroskedasticity. Tables 10.1
and 10.2 report the results for a common, one-time change in volatility (case E) under rank rp = 1. As
noted in Section under Assumption V” with o (-) non-constant, both the asymptotic tests and the
bootstrap tests based on i.i.d. re-sampling do not preserve their usual consistency properties while,
according to Proposition 2| the bootstrap test from Algorithm 1 with wild re-sampling in step (iii) is
expected to be approximately correctly sized.

The results in Table 10.1 clearly show that under a one-time change in volatility both the asymp-
totic test, Q1/r, and bootstrap tests based on i.i.d. re-sampling (both the inﬁ test and Swensen’s
ii.d. Q’l‘“jﬂl test) display highly unreliable size properties; for example, when T' = 200, Q1 r has size
around 34%, Q’{fi{ﬂl about 18.5% and Q’{?jﬂl at least 20%. In contrast, our Qg% wild bootstrap test,
is largely satisfactory; its empirical size is only slightly above 5% for all values of §. Moreover, Qo'r
outperforms the wild bootstrap test of Cavaliere et al. (2010a, 2010b), ~6:’VT.

Again, these findings are further supported by the results for the corresponding sequential pro-
cedures reported in Table 10.2. The sequential procedure based on :‘% selects the true rank with
frequency very close to 95% throughout. Conversely, both the standard procedure based on Q1
and the bootstrap procedure based on i.i.d. re-sampling of the residuals, tend to over-estimate the
co-integration rank. Moreover, the wild bootstrap version of Algorithm 2 again outperforms the se-
quential procedure of Cavaliere et al. (2010a, 2010b), even in cases where the latter is asymptotically
valid (6 =0 and 6 = 1).

We conclude by examining the frequencies with which the various bootstrap sequential algorithms
violate the root check conditions. As far as Algorithms 1 and 2 are concerned, it can be seen that
although some violations do occur for the smallest sample size considered, T' = 50, the frequency
of such failures drops to below 1% for T = 200. Conversely, the algorithms in Swensen (2006) and
Cavaliere et al. (2010a, 2010b) display a substantial number of failures, even in cases where they
are asymptotically valid. Overall, as in the rop = 0 case, at least for the simulation DGPs considered
here, Algorithm 2 based on wild bootstrap re-sampling not only has the best performance in terms
of selecting the correct co-integration rank, but also outperforms the other algorithms in terms of its

ability to generate I(1) bootstrap samples.

7 Conclusions

In this paper we have discussed the bootstrap implementations of the pseudo likelihood ratio co-
integration rank test and associated sequential procedure of Johansen (1996) that have recently been
proposed in Cavaliere et al. (2012). Unlike the bootstrap procedures of Swensen (2006) and Cavaliere
et al. (2010a, 2010b), these are based only on restricted estimates of the underlying VAR model; the
other bootstrap procedures mentioned use a mixture of restricted and unrestricted estimates. For
the case of an i.i.d. re-sampling scheme, Cavaliere et al. (2012) demonstrate that their proposed
bootstrap procedure is both asymptotically correctly sized and consistent when the VAR is driven

by i.i.d. innovations, without the need for the conditions laid out in Swensen (2009) to hold on the
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underlying VAR. In contrast the bootstrap procedures of Swensen (2006) and Cavaliere et al. (2010a,
2010b) require these conditions to hold. We have extended the work of Cavaliere et al. (2012)
by analysing how their bootstrap procedures behave when the innovations are heteroskedastic, also
proposing a wild bootstrap based implementation of their approach. Precisely, we have shown that,
when the wild bootstrap implementation is used, this approach is asymptotically correctly sized and
consistent under either conditional or unconditional heteroskedasticity, again without the requirement
that the conditions of Swensen (2009) hold. When the i.i.d. bootstrap is used, this outcome no longer
holds in the case of unconditional heteroskedasticity but does continue to hold under conditional
heteroskedasticity.

A small Monte Carlo experiment suggested that, at least on the basis of the set of simulation
DGPs considered, the procedure based on the wild bootstrap works very well in finite samples for a
variety of models of heteroskedasticity (both conditional and unconditional), outperforming (at least
for the simulation DGPs considered) not only asymptotic-based procedures, but also the corresponding
bootstrap procedures from Swensen (2006) and Cavaliere et al. (2010a, 2010b). Further numerical
investigation of the relative performance of the procedures discussed in this paper for a wider set of

simulation DGPs would constitute a useful topic for future research.
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Appendix

A.1 Preliminary Lemma

For the proofs in Appendix A.2 covering the case where innovations satisfy Assumption V” a minor
generalization of the law of large numbers (LLN) in Lemma A.1 of Cavaliere et al. (2010b) is needed.
Specifically, Lemma A.1 of Cavaliere et al. (2010b) holds under Assumption V” but with the additional
assumption of symmetry, which we relax now relax.

As in Lemma A.1 of Cavaliere et al. (2010b) consider the p-dimensional heteroskedastic VAR

processes:
Yi=A1Ye 1 +...+AnYem + e, (A.1)
Xi=B1Xe 1+ ...+ By Xep + e,

with e; satisfying Assumption V”, i.e. the ¢; are allowed to be asymmetrically distributed. The

characteristic polynomials are denoted as A (z) = 1—A1z—...— Ap2z2™and B (2) = 1—Byz—...— Bp2"

respectively for the two autoregressions. The processes are well-defined for ¢t = 1, .., T with fixed initial
values (Yy,Y',,...,Y" ) and (X3, X', .., X" ).

Lemma A.1” Consider the VAR heteroskedastic processes Yy and X defined in , where the
roots of det|A(z)| = 0 and det|B(z)| = 0 are all assumed to lie outside the unit circle. Then as
T — oo, for k>0,

T o]
1 3 5y
t=1 =0
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where ¥ := fo s)ds, and ©; and T'; are the coefficients obtained by inversion of the characteristic

polynomials A (z ) and B (z) respectively.

PROOF. Rewrite (A.2) as

*ZYi t+k = ZE Y Xip) +

First, the first term on the right hand side of (A.3) converges to %, ©;XI;
et al. (20100, proof of Lemma A.1). To show that the second term converges in probability to zero it
suffices to establish that, as in the proof of Lemma A.1 of Cavaliere et al. (2010b):

N

)+ S (YViXEy — B (YiXL,y)) (A.3)
t=1

i+x» as shown in Cavaliere

T

1
Vii= ; (U] - E (U0)) %0,

where U, follows the multivariate vector autoregression, Uy, = AU;_1 + &, with p(4) < 1. Without

loss of generality we may set Uy = 0 in what follows. Recalling the notation X; = o407, first rewrite

Vr as,
1 T t—1 1 T t—1t—1
; /
Vr = T E E A’ (615_1‘6; i — M- z A“ + = T E E AZEt ZEt J ) =: Kp + Jr.
t=1 =0 t=1 =0 5=0
J#i

Consider first K7. Here we have that

T t—1 A T—1 . 1 T .
1%rl = TZZAZ Frrifhes = i) A7) = A (Tz(gt—idfi_zt—i)> .
t=1i=0 i=0 t=1
- 1 T—1
S Z”AZH T Et—i€4_; — 2t z)
i=0 t=1

and, hence, K7 5 0. To see this use the result that Z HAZH < C < oo, which obtains by virtue
of the fact that p (A) < 1. Moreover we have,

T—i 2

!
(6t7i8t_i — X z
t=1

E

T ) 1
< g2 2 Bl nl =0 (5)

since for all ¢, o and X, are finite (see Cavaliere et al., 2010b) and &; has finite fourth moment.

1
T

Turning next to Jr, set & := 1 (¢t > 1) &; and rewrite Jr as follows,

1 T t—1t-—1 ) y 1 T - -

ZINE S 9 9) WEREEVIEES 3) 3) o EREINY
t 1 =0 5= t=1 =0 j=
o o

T—1T-1 1 T
=Yy a - > g”g;_]) AT
=0 0 t=1

3=0
JF
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This implies that

T-17T-1 ) _ 1 T
Bl < Y3 414 B e
=0 ];0 t=1
YES)

As before, Z ZJT 01 HAZH HAJH < C < oo and so to show that Jr % 0 we need to find an o (1)

upper bound for F HT*1 Zthl A ]H which is independent of 7, j. To that end, observe that

2 ] T
(s ) <l e-s

Since ¢; (and hence &;) are independent, £ (é;fiés,iééfjés,j) # 0 for t = s only, which implies

(ol

as required. 0

2 T T

=7 Z Z E (gé—iés—igfg,jés_j) i

s=1t=1

T

I,
fzgt—ifiﬂ‘

t=1

T

Z t-ifij

=1

2 T
1 B 1
) < w3 E Gt = Y plL ElL =0 (1),

t=1

A.2 Proofs of Lemma [1, Propositions and Corollary 1

PROOF OF LEMMA [I] The results in Lemma 1 are proved under Assumption V (i.i.d. innovations) in
Lemma 1 of CRT. We therefore state here the modifications needed to the proof of Lemma 1 of CRT
to allow for the case where the innovations follow either Assumption V’ or V”. In order to do so we
will apply results from Cavaliere et al. (2010a) and Cavaliere et al. (2010b) for Assumptions V' and
V7, respectively. The proof of Lemma 1 is given for case (i) of no deterministics; the generalisations
to the cases of (ii) a restricted constant and (iii) a restricted linear trend, mimic the arguments in the
proof of Lemma 1 of CRT and are therefore omitted in the interests of brevity. We establish in turn

that the stated results hold under Assumptions V’ and V”.

Assumption V’:
We start by introducing a convenient normalisation of the co-integration parameters, which allows us
to prove part (i) of the Lemma; that is, convergence to the pseudo-true parameter vector Hér). We

then prove part (ii) by establishing that HST) does indeed satisfy the I(1,7) conditions for r < rg.

Normalisation. Denote by ag, By, Yo := (I'10,...,'k—1,0) and g the true parameters in (2.1). By
Lemmas A.1-A.3 of Cavaliere et al. (2010a), the results of Theorem 11.1 in Johansen (1996) apply.
Therefore, in particular, the ¢ largest sample eigenvalues (S\i)izlj,_”ro from (3.1) satisfy, as T — oo,
the population eigenvalue problem, ‘)\255 — 2502601205‘ = 0. Here ¥;; := Q;; — QZ‘QQQ_;QQJ‘ for
i,7 = 0,0 and :=plimTﬁoo%ZZitZ]'4t for i,j = 0,2, with Zg, = 'Xt, Zoy :== AX; and
Zor = (AX]_4, ..., AX] k+1) . As in Lemma 1 of CRT, let s := (k1,..., kr,) denote the eigenvectors
corresponding to the elgenvalues AL > A2 > .o > Ay >0, such that x'Yggk = I,,;,. We can then define
Bo = Pk and o := a (K ) . Observe that, o’ = af}, while also

S8, =Ir,  and B 0850 Sog, = diag (A, . Arg) (A.4)
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with Yg g and ¥ o defined as above. Indeed, the relations in (A.4)) are the population equivalents of

the sample normalisations in (3.5]).

Convergence to pseudo-true values. With ,@ = ﬁ(m) the PMLE under the true rank rg, satisfies by the

results in Lemmas A.1-A.3 of Cavaliere et al. (2010a), By(8 — B) 2 0 and T/?8% (B — By) 2 0.
Next, as in the proof of Lemma 1 of CRT, by Assumption 2, this implies directly that,

B =B o and T2 (37 - B) B0 (A.5)
where 6((;) = BOKT(Z), with K defined after equation (3.5)). Likewise,

al" B 55 K = ap K1) = oz(()r). (A.6)

o

Regarding \11(7"), define M;; := % Zthl ZitZét, such that ¥ = <M02 — &(T)B(T)IMH) Mil, and hence,

@(r) ﬁ) (QOQ — OéoKﬁg)Kgg),Qﬁog) 92_21 = Uy + g (r) K(r)l 950292_21 =: ‘I/E)T) (A7)

T0,L7"T0,L

with K" = (0, I,,_,)". Finally, for £(") it holds that

s L

2(7“) = S()() — &(r)&(r)l ﬁ) Egr) = Z(] + Qg (r) K(T)I 046 > 0. (AS)

T0sL T0,1

Pseudo true values satisfy the I(1,r) conditions, with r < ry. Rewrite the DGP as
AX, = a8 X 1 + O Zos + 64 (A.9)

see (A.6)—(A.7), with e, ; given by
ere = €1+ oK) KT (B0 X1 — Q5,205 Zoy ). (A.10)

Observe that under Assumption V’, ﬁ(()r)'Xt_l and Zy; In 1) are uncorrelated with &,;. Proceed
next as in the proof of Lemma 1 of CRT, by first writing the system in companion form and using

identical arguments to see that the I(1,r) conditions hold under V’.

Assumption V7:

Under Assumption V7, we can apply results from Cavaliere et al. (2010b) who repeatedly apply the
LLN for heteroskedastic vector autoregressions; see Cavaliere et al. (2010b), Lemma A.1. As noted in
Appendix A.1 we need the modified version stated in Lemma A.1” to allow for asymmetric innovations.
Using Lemma A.1” allows us in particular to replace ¥ in the foregoing proof under Assumption V’,
by X := fol o (s) o (s)" ds. Moreover, note that whenever arguments here and in Cavaliere et al.(2010b)

refer to Lemma, A.1, this should subsequently be replaced by a reference to Lemma A.17 above.

Normalisation and convergence to pseudo-true values. Lemmas A.2-A.3 of Cavaliere et al. (20100)
imply that we get identical results to those given above in the proof under Assumption V’ in terms

of 3 = Qy — QiQQQ_QIQQj for ¢,5 = 0,8 and Q;;, 7,5 = 0,2, 8, but where the limiting expressions
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for the €;; are now as defined in the proof of Lemma A.2 of Cavaliere et al. (2010b) with ¥ =% :=

fol o (s) o (s) ds, and with a corresponding change in the definition of Egr).

Pseudo true values satisfy the I(1,r) conditions, with v < ry. Rewrite the DGP as in (A.9) and
define £,; as in 1j then again we note that under Assumption V", ,BE]T)'Xt_l and Zy; in 1)
are uncorrelated with ¢, ;. Proceed as in the proof of Lemma 1 of CRT by writing the system in

companion form and using identical arguments to see that the I(1,r) conditions hold under V”. O

PROOF OF PROPOSITION For the i.i.d. bootstrap, the results in and are established in
Proposition 1 of CRT under Assumption V (i.i.d. innovations). As in the proof of Lemma |l} we state
below the modifications needed for the extensions required to cover Assumptions V' and V7, applying
results from Cavaliere et al. (2010a) and Cavaliere et al. (20100), respectively, for both the i.i.d.
bootstrap and the wild bootstrap. Again we focus on the case (i) of no deterministics as the extension

to deterministics simply mimics the same arguments as in the proof of Proposition 1 of CRT.

Assumption V’:

For r = ry the results in and are established in Lemma A .4 of Cavaliere et al. (2010a). Next,
for r < rg, the results hold by the proof of Proposition 1 in CRT, re-defining X} = (X:ft, ey X;"g_k+1>, ,
AXoy = Zo and Y5 = ()5 for 1,5 = 0,2, 3, By in terms of the notation introduced above in the proof
of Lemma [1| under Assumption V’. Thus the algebraic arguments in CRT using the companion form

in terms of X, see equation (A.9) of CRT, directly yield the representation,
ot
X;, =C0 Y e, + 8,12, (A.11)
i=1

where C") is as defined in Proposition 1, gy 18 as defined in Algorithm 1, and S;; is as defined
in the proof of Proposition 1 in CRT. That P*(max¢—; . 7 ||Srt| > n) = o0, (1) holds by the argu-
ments given in the proof of Proposition 1 of CRT, using the consistency of the estimators established
here in Lemma (1| under Assumption V’, provided that P* (Tfl/2 max;—i,..T HejftH > 77) = o, (1).
For the i.i.d. bootstrap, this holds, as in CRT, by applying Chebychev’s inequality, the fact that
E* (6::158:715)2 =171 (&7 480 — E;ET)Q and that by Assumption V’, &; has bounded fourth or-
der moment. For the wild bootstrap, the proof is identical except that, with &, := T~! Zthl Ert
E* (ﬁ,’tﬁ,t)g = [(érs — &) (s — g7")]2 = (é;,tér,t - géér)%

Next, the result that 71/ 2X:7LTUJ gp CST)W(U), follows by the consistency in Lemma (1| under
Assumption )’ together with the convergence result 7~/ ZZgH Ert %, W (), which, as in Cavaliere

et al. (2010a), for the wild bootstrap is implied by the pointwise convergence

| 7] | \7u)
D et =7 > eraera+op (1) B uxy” (A.12)
t=1 t=1

while, for the i.i.d. bootstrap, follows by noticing that the bootstrap FCLT in Swensen (2006) holds

under Assumption V’ as well.
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Assumption V7:

Similarly to what was established under Assumption V’, for r = r¢ the results in and are
established in Lemmas A.4 and A.5 of Cavaliere et al. (2010b). Likewise, for r < 7 the algebraic
arguments given in the proof of Proposition 1 of CRT directly yield the representation in (A.11])
> 1) = 0p (1) holds by the arguments in CRT,

under Assumption V”. Also, that P* (max;—1 7 [|Sr¢
proof of Proposition 1, using the consistency of the estimators established here in Lemma [1| under
Assumption V7, and using the result that P* (T‘l/2 maxg—i,..T HE,’itH > 77) = 0y (1). The latter holds
as in the proof of Lemma A.4 in Cavaliere et al. (2010b), using the fact that under Assumption V" &;

has bounded fourth order moment.

Next, the result that T_1/2X;f ] ﬂ>1D C(()T)M(u), follows by the consistency in Lemma (1| under
|

Assumption V7 together with the convergence result 7!/ QZtEl Ert %, M (-), which again holds by
Cavaliere et al. (2010b), Lemma A.5. O

PROOF OF PROPOSITION [2} Under Assumption V’ and as in the proof of Theorem 3 of Cavaliere et al.

(2010a), this follows immediately by the results in Proposition using standard arguments and defining
~1/2

By, := (aé?’i]gr)a((ﬁ> a((]?'W. Likewise, under Assumption V", this holds by Proposition [l{ and

. —1/2
the proof of Theorem 3 in Cavaliere et al. (2010b), defining M,,_, := (aé?’E(()r)a()l) oz((ﬁ)’M. O

PRrROOF OF COROLLARY 1. Straightforward and therefore omitted in the interests of brevity. 0
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TABLE 1.1: EMPIRICAL REJECTION FREQUENCIES OF ASYMPTOTIC
AND BOOTSTRAP CO-INTEGRATION RANK TESTS. VAR(2) MODEL
WITH RANK 79 = 0, IID GAUSSIAN ERRORS

Qor  Q'f Q% Qv Q5
0 T ERF ERF ERF RC ERF ERF RC
0.0 50 19.1 4.6 4.2 0.0 4.6 3.2 0.0
100 10.4 4.7 4.7 0.0 4.7 4.1 0.0
200 7.9 5.0 4.8 0.0 4.9 4.4 0.0
0.5 50 39.1 7.5 6.8 0.0 5.4 3.8 0.0
100 19.0 6.0 6.0 0.0 9.3 4.6 0.0
200 11.0 4.9 5.0 0.0 5.0 4.7 0.0
0.8 50 80.2 194 169 04 8.1 5.5 0.0
100 47.1 11.7 10.8 0.0 6.5 5.2 0.0
200 23.1 7.1 6.7 0.0 5.6 5.0 0.0
0.9 50 93.3 30.2  25.0 1.9 11.0 71 1.6
100 75.9 221 203 0.2 8.4 6.9 0.0
200 44.8 119 11.3 0.0 6.3 5.9 0.0

Notes: ‘ERF’ denotes the empirical rejection rates; ‘RC’ denotes the percentage of
times the bootstrap algorithm generates explosive samples.

TABLE 1.2: SEQUENTIAL PROCEDURES FOR DETERMINING THE CO-INTEGRATION RANK. VAR(2) MODEL WITH RANK rg = 0, IID GAUSSIAN ERRORS

ASYMPTOTIC Unrestricted, IID BS Unrestricted, Wild BS Restricted, IID BS [CRT] Restricted, Wild BS [CRT]

~ T 7=0 1 2 34 r=0 1 2 34 RC r=0 1 2 34 RC r=0 1 2 34 RC r=0 1 2 3,4 RC
0.0 50 809 164 23 04 954 41 05 00 0.0 95.8 39 03 0.0 0.0 95.5 42 03 0.0 0.0 96.8 29 03 0.0 0.0
100 896 91 1.1 0.2 953 43 04 00 0.0 953 42 05 0.0 0.0 95.3 43 04 0.0 0.0 959 35 05 0.1 0.0

200 921 72 06 0.1 95.1 46 03 01 0.0 952 44 03 0.0 0.0 95.1 45 03 0.1 0.0 95.6 4.0 04 0.1 0.0

05 50 609 292 77 21 925 6.6 08 02 0.1 932 6.0 08 01 0.1 946 48 05 0.1 0.0 96.2 32 04 02 0.1
100 81.0 16.0 24 0.6 940 52 0.7 01 0.0 940 54 05 0.1 0.0 94.7 47 06 0.1 0.0 954 4.0 05 0.2 0.0

200 890 99 10 0.2 95.1 45 04 01 0.0 95.0 46 03 0.0 0.0 95.0 45 04 0.1 0.0 95.3 42 04 0.1 0.0

0.8 50 19.8 382 255 16.5 80.6 162 2.6 05 2.5 83.2 138 2.7 04 21 91.9 72 07 02 0.3 945 45 06 04 0.2
100 529 340 96 34 884 99 14 04 0.2 8§9.2 93 12 03 0.2 93.5 58 0.6 0.1 0.1 948 44 06 0.2 0.1

200 769 194 31 06 929 64 06 01 0.0 93.3 6.0 06 0.1 0.0 944 5.1 05 0.1 0.0 95.0 45 04 0.2 0.0

0.9 50 6.7 23.6 30.3 39.4 69.8 23.7 54 11 9.2 75.0 19.0 47 12 84 89.0 96 1.2 0.2 21 929 58 0.8 05 22
100 24.1 38.0 23.3 14.7 779 182 32 06 1.7 797 170 2.7 07 1.7 91.6 74 09 0.1 0.2 93.1 58 0.7 04 0.2

200 552 322 9.7 3.0 88.1 105 1.3 02 0.3 88.7 98 13 02 02 93.7 58 0.5 0.1 0.1 941 52 05 0.2 0.1

Notes: ‘Restricted’ denotes Algorithm 2 of Section 3, ‘Unrestricted” denotes Algorithm 2 of Swensen (2006) [IID bootstrap] and Cavaliere et al. (2010a,b) [Wild Bootstrap].
Entries denote the frequency with which each value of r is selected by the given algorithm.



TABLE 2.1: EMPIRICAL REJECTION FREQUENCIES OF ASYMPTOTIC
AND BOOTSTRAP CO-INTEGRATION RANK TESTS. VAR(2) MODEL
WITH RANK 79 = 0, IID #(5) ERRORS

Qor  Q'f Q% Qv Q5
0 T ERF ERF ERF RC ERF ERF RC
0.0 50 19.0 5.1 4.1 0.0 5.1 2.8 0.0
100 11.8 5.4 5.1 0.0 5.5 4.5 0.0
200 7.9 4.9 4.7 0.0 5.0 4.4 0.0
0.5 50 39.5 7.7 6.8 0.0 5.8 3.6 0.0
100 19.7 6.0 5.9 0.0 5.4 4.7 0.0
200 11.4 0.4 5.1 0.0 5.1 4.8 0.0
0.8 50 79.5 191 165 0.5 8.0 5.0 0.1
100 46.8 106 10.5 0.0 6.0 5.0 0.0
200 23.7 7.3 7.0 0.0 9.7 5.1 0.0
0.9 50 93.2 29.7 249 22 10.5 6.4 1.5
100 77.0 209 191 0.2 7.9 6.1 0.0
200 45.4 124 11.8 0.0 6.7 5.8 0.0

Notes: see Table 1.1

TABLE 2.2: SEQUENTIAL PROCEDURES FOR DETERMINING THE CO-INTEGRATION RANK. VAR(2) MODEL WITH RANK 19 = 0, IID ¢(5) ERRORS

ASYMPTOTIC Unrestricted, IID BS Unrestricted, Wild BS Restricted, IID BS [CRT] Restricted, Wild BS [CRT]

~ T r=0 1 2 34 r=0 1 2 34 RC r=0 1 2 34 RC r=0 1 2 34 RC r=0 1 2 3,4 RC
0.0 50 810 163 23 0.5 9.0 46 04 00 0.0 99 36 04 01 0.0 949 48 0.3 0.0 0.0 972 24 03 0.1 0.0
100 88.2 107 0.8 0.3 946 48 05 0.1 0.0 949 45 04 01 0.0 945 49 0.5 0.1 0.0 955 39 04 0.2 0.0

200 921 72 06 0.1 95.1 44 04 0.1 0.0 953 43 04 00 0.0 95.0 45 04 01 0.0 956 39 04 0.1 0.0

05 50 606 297 76 23 923 69 07 01 0.1 932 6.1 07 01 0.1 943 53 04 0.0 0.0 964 3.1 04 0.1 0.0
100 80.3 168 24 0.5 940 55 05 01 0.0 941 52 06 01 0.0 946 50 04 0.1 0.0 953 40 05 0.1 0.0

200 886 101 1.1 0.2 946 49 05 01 0.0 949 47 04 01 0.0 95.0 46 04 0.1 0.0 95.2 43 04 0.2 0.0

0.8 50 205 36.9 25.8 16.7 809 16.1 24 06 2.3 83.5 135 25 05 23 920 7.1 08 0.2 0.2 95.0 42 06 0.2 0.2
100 53.2 337 99 33 894 95 10 01 0.2 895 90 12 02 0.1 94.0 54 05 0.1 0.0 95.0 42 06 0.2 0.0

200 76.3 19.7 34 0.7 927 6.5 08 01 0.0 93.0 6.2 06 02 0.0 943 52 05 0.1 0.0 949 44 05 0.2 0.0

0.9 50 6.8 246 29.6 39.1 70.3 237 48 12 84 75.1 187 49 13 79 89.5 93 1.0 02 19 936 52 08 04 1.7
100 23.0 39.1 24.1 13.9 79.1 175 29 05 1.9 809 155 31 06 1.8 921 7.1 0.7 0.1 0.1 939 50 08 03 0.3

200 546 326 9.5 3.2 8§76 109 1.3 02 0.3 88.2 103 14 0.1 0.3 93.3 6.1 0.6 0.1 0.0 942 50 06 0.2 0.0

Notes: see Table 1.2



TABLE 3.1: EMPIRICAL REJECTION FREQUENCIES OF ASYMPTOTIC
AND BOOTSTRAP CO-INTEGRATION RANK TESTS. VAR(2) MODEL
WITH RANK 79 = 0, GARCH ERRORS

Qor  Q'f Q% Qv Q5%
0 T ERF ERF ERF RC ERF ERF RC
0.0 50 18.9 5.0 4.3 0.0 5.2 3.3 0.0
100 11.1 5.9 5.1 0.0 5.8 4.4 0.0
200 8.7 6.0 4.7 0.0 5.8 4.6 0.0
0.5 50 39.7 7.7 7.0 0.0 5.7 4.0 0.0
100 19.9 7.1 6.3 0.0 6.2 4.7 0.0
200 11.6 6.0 5.1 0.0 5.7 4.6 0.0
0.8 50 80.0 195 171 04 8.2 5.2 0.1
100 47.5 120 109 0.0 7.2 5.3 0.0
200 24.7 8.1 7.0 0.0 6.2 5.0 0.0
0.9 50 93.4 30.8 265 2.0 10.7 6.7 1.6
100 76.4 227 199 0.2 8.8 6.7 0.1
200 47.1 126 114 0.0 7.3 5.9 0.0

Notes: see Table 1.1

TABLE 3.2: SEQUENTIAL PROCEDURES FOR DETERMINING THE CO-INTEGRATION RANK. VAR(2) MODEL WITH RANK 19 = 0, GARCH ERRORS

ASYMPTOTIC Unrestricted, IID BS Unrestricted, Wild BS Restricted, IID BS [CRT] Restricted, Wild BS [CRT]

~ T r=0 1 2 34 r=0 1 2 34 RC r=0 1 2 34 RC r=0 1 2 34 RC r=0 1 2 3,4 RC
0.0 50 81.1 158 2.5 0.7 9.0 43 06 01 0.1 9.7 36 06 01 0.1 948 45 0.6 0.1 0.0 96.7 28 04 0.1 0.1
100 89.0 95 13 03 941 54 04 01 0.0 949 47 04 0.1 0.0 942 53 04 0.1 0.0 956 3.7 05 0.2 0.0

200 913 77 08 0.2 940 54 06 01 0.0 953 42 04 01 0.0 942 52 05 01 0.0 954 40 04 0.2 0.0

05 50 603 304 73 20 923 69 07 02 0.2 93.0 6.0 09 01 0.1 943 52 05 01 0.0 96.0 34 04 02 0.1
100  80.1 16.7 2.7 0.6 93.0 64 05 02 0.0 938 56 05 01 0.0 939 56 05 01 0.0 953 40 05 0.2 0.0

200 884 101 1.3 0.3 940 54 06 00 0.0 949 46 04 01 0.0 943 52 05 0.1 0.0 954 40 05 0.2 0.1

0.8 50 200 374 26.1 16.5 80.5 163 2.7 05 24 829 143 22 05 23 91.8 73 0.8 0.1 0.2 948 44 05 0.3 0.2
100 52,5 334 108 34 88.1 105 1.1 03 0.2 89.2 96 10 02 0.2 928 6.5 0.6 0.1 0.1 947 46 06 0.1 0.1

200 753 202 36 1.0 919 71 09 01 0.1 93.0 6.1 07 02 0.0 93.8 55 06 0.1 0.0 95.0 43 05 03 0.0

0.9 50 6.7 234 304 39.6 69.3 247 49 1.1 9.0 73.5 208 49 0.8 8.0 893 93 1.1 03 23 933 55 09 04 21
100 23.6 383 234 14.7 774 193 28 06 1.8 80.1 16.8 2.7 05 1.8 91.3 77 09 02 0.2 93.3 56 08 03 0.2

200 529 335 104 3.2 874 109 13 03 0.3 88.6 10.0 1.1 0.2 0.3 927 6.5 0.7 0.1 0.0 942 51 05 03 0.1

Notes: see Table 1.2



TABLE 4.1: EMPIRICAL REJECTION FREQUENCIES OF ASYMPTOTIC
AND BOOTSTRAP CO-INTEGRATION RANK TESTS. VAR(2) MODEL
WITH RANK 79 = 0, AUTOREGRESSIVE STOCHASTIC VOLATILITY
Qo,r Q'r Q% Q' Q'
¥ T ERF ERF ERF RC ERF ERF RC
0.0 50 33.9 14.5 8.6 0.3 14.4 42 0.1
100 28.5 19.0 8.2 0.0 19.0 5.2 0.0
200 26.9 21.5 7.3 0.0 21.4 5.6 0.0
0.5 50 51.5 173 11.6 1.0 14.4 47 04
100 35.7 18.4 8.8 0.1 17.0 4.6 0.1
200 29.0 19.4 74 0.1 19.0 58 0.0
0.8 50 82.6 29.8 21.1 3.6 18.4 6.2 25
100 57.2 229 123 0.9 17.5 54 0.9
200 38.7 19.4 8.6 0.3 17.3 56 0.3
0.9 50 93.3 40.2 289 6.4 22.4 7.6 6.2
100 78.9 327 19.7 24 20.5 6.9 24

200 55.7 23.6 12.0 0.7 18.2 6.4 0.6
Notes: see Table 1.1

TABLE 4.2: SEQUENTIAL PROCEDURES FOR DETERMINING THE CO-INTEGRATION RANK. VAR(2) MODEL WITH RANK 79 = 0, AUTOREGRESSIVE STOCHASTIC VOLATILITY

ASYMPTOTIC Unrestricted, IID BS Unrestricted, Wild BS Restricted, IID BS [CRT] Restricted, Wild BS [CRT]

~ T 7=0 1 2 34 r=0 1 2 34 RC r=0 1 2 34 RC r=0 1 2 34 RC r=0 1 2 34 RC
0.0 50 66.1 268 59 1.3 8.5 126 1.6 03 0.6 914 76 09 02 0.6 8.6 125 16 02 0.5 958 34 05 03 04
100 715 239 38 08 81.0 16.7 20 04 04 91.8 74 07 01 0.2 81.0 16.6 2.0 04 04 948 44 07 0.2 0.2

200 731 221 41 0.7 786 183 26 05 0.3 92.7v 6.5 07 00 0.2 786 182 2.7 05 0.3 944 46 08 0.2 0.2

0.5 50 486 363 119 3.2 827 151 19 03 1.7 884 102 12 02 14 8.6 12.7 16 02 1.1 953 38 06 03 0.8
100 643 29.2 53 1.2 81.6 159 21 03 0.5 91.2 79 08 01 03 83.0 149 18 04 0.5 954 39 05 0.3 0.3

200 71.0 236 45 09 80.6 165 2.5 04 04 926 6.6 08 0.1 0.2 81.0 163 24 04 04 942 48 07 0.2 0.2

0.8 50 174 372 283 17.1 70.2 244 45 08 6.8 789 175 3.0 06 5.9 81.6 16.1 2.0 03 34 939 50 08 04 3.1
100 42.8 387 142 43 771 194 32 03 1.7 877 106 16 02 14 82,5 152 21 02 1.3 946 43 07 04 1.1

200 61.3 299 74 14 80.6 16.8 23 03 0.6 914 76 09 01 04 82.7 151 19 04 0.6 944 47 0.7 02 04

0.9 50 6.7 239 30.8 38.7 59.8 313 74 15 15.0 71.1 224 55 1.0 13.1 776 193 2.7 05 7.8 924 6.1 1.0 0.6 7.0
100 21.1 376 264 14.9 67.3 262 56 08 52 80.3 16.3 28 06 4.6 79.5 175 27 03 3.2 93.1 55 09 05 29

200 44.3 38.1 133 44 764 19.8 34 04 14 88.0 102 15 03 1.3 81.8 159 21 03 1.1 936 50 09 05 1.0

Notes: see Table 1.2



TABLE 5.1: EMPIRICAL REJECTION FREQUENCIES OF ASYMPTOTIC
AND BOOTSTRAP CO-INTEGRATION RANK TESTS. VAR(2) MODEL
WITH RANK 79 = 0, SINGLE VOLATILITY BREAK

Qor Qi Q% QR Qry
v T ERF ERF ERF RC ERF ERF RC
0.0 50 55.4 28.7 17.9 0.0 28.6 10.1 0.0
100 46.3 32.2 12.2 0.0 31.8 8.7 0.0
200 42.7 34.2 8.7 0.0 34.2 7.1 0.0
0.5 50 68.3 28.1 18.1 0.5 24.5 9.9 0.1
100 54.2 31.3 129 0.0 29.1 8.2 0.0
200 47.2 33.8 9.1 0.0 33.3 6.8 0.0
0.8 50 86.0 33.5 221 6.0 22.8 10.6 4.0
100 69.7 32.1 14.6 0.2 24.8 7.8 0.1
200 58.1 32.7 9.8 0.0 29.5 6.2 0.0
0.9 50 93.6 41.2  28.3 109 24.1 12.3 159
100 83.6 37.8 18.0 2.6 24.1 8.8 2.9
200 69.6 33.6 11.1 0.2 25.6 6.7 0.1

Notes: see Table 1.1

TABLE 5.2: SEQUENTIAL PROCEDURES FOR DETERMINING THE CO-INTEGRATION RANK. VAR(2) MODEL WITH RANK rg = 0, SINGLE VOLATILITY BREAK

ASYMPTOTIC Unrestricted, IID BS Unrestricted, Wild BS Restricted, IID BS [CRT] Restricted, Wild BS [CRT]
~ T r=0 1 2 34 r=0 1 2 34 RC r=0 1 2 34 RC r=0 1 2 34 RC r=0 1 2 34 RC
0.0 50 447 409 125 2.0 713 251 32 04 16 82.1 153 22 04 1.2 714 251 31 04 1.5 900 86 12 03 0.7
100 53.7 363 88 1.2 678 279 41 03 14 8§78 10.7 1.3 02 0.6 68.2 276 39 03 13 91.3 77 09 02 05
200 573 342 76 09 65.8 294 44 04 1.1 91.3 77 08 02 03 659 292 45 04 1.0 929 63 06 02 02
0.5 50 31.7 458 184 4.1 71.9 247 3.1 02 38 819 158 20 03 3.0 755 218 25 0.2 22 90.1 87 1.0 02 1.0
100 458 40.2 119 2.1 68.7 263 45 04 19 871 10.8 1.8 02 1.0 709 249 40 03 1.7 918 71 10 01 0.6
200 528 371 87 14 66.3 29.2 42 04 1.3 909 &80 1.0 01 04 66.8 288 41 03 1.3 932 6.1 06 01 04
0.8 50 14.0 41.7 319 124 66.5 29.1 42 0.2 15.7 779 190 28 0.3 135 772 208 19 0.1 82 894 94 11 02 6.5
100 30.3 458 19.2 4.7 679 281 3.7 03 4.7 86.4 128 16 02 26 752 223 24 01 27 922 6.7 09 0.1 1.2
200 419 425 13.0 26 67.3 282 42 04 24 90.2 87 09 02 09 70.5 258 34 03 19 93.8 57 05 01 0.5
0.9 50 6.5 30.2 365 26.9 58.8 352 5.7 03 274 71.7 241 3.8 04 237 759 216 23 0.1 219 87.7 10.7 14 0.2 195
100 164 43.5 29.5 10.6 62.3 332 43 03 118 82.0 158 20 02 7.8 759 219 20 0.1 69 912 78 09 01 45
200 304 46.2 19.0 44 66.4 29.1 41 04 4.6 889 97 12 02 19 744 230 25 0.1 28 93.3 6.1 06 01 09

Notes: see Table 1.2



TABLE 6.1: EMPIRICAL REJECTION FREQUENCIES OF ASYMPTOTIC AND BOOTSTRAP CO-INTEGRATION
RANK TESTS. VAR(2) MODEL WITH RANK 19 = 1, IID GAUSSIAN ERRORS

Qor Qur  QFi Q% O Qiid Qv ooy
1) T ERF ERF ERF ERF RC ERF ERF RC ERF ERF RC ERF ERF RC
0.0 50 97.6 464 59.0 50.5 2.4 9.9 94 04 56.6 50.8 0.0 4.9 4.5 0.1
100 100.0 23.6 99.4 99.0 0.1 7.9 7.6 0.0 99.3 99.2 0.0 5.6 4.3 0.0
200 100.0 13.9 100.0 100.0 0.0 6.1 59 0.0 100.0 100.0 0.0 5.4 4.8 0.0
0.1 50 97.6 46.2 56.3 47.6 7.2 10.0 9.8 04 55.6 49.3 0.0 4.7 44 0.1
100 999 234 99.1 98.7 2.4 8.0 7.7 0.0 99.3 99.1 0.0 5.5 4.2 0.0
200 100.0 13.9 100.0 100.0 0.5 6.1 59 0.0 100.0 100.0 0.0 5.4 4.8 0.0
0.2 50 97.2 46.1 48.5 40.7 24.1 9.9 9.2 0.7 52.7 46.2 0.0 4.7 4.3 0.1
100 99.9 23.1 98.2 97.2 29.0 8.6 82 0.0 99.1 98.8 0.0 5.6 4.2 0.0
200 100.0 13.6 100.0 100.0 34.4 6.8 6.6 0.0 100.0 100.0 0.0 5.5 4.8 0.0
0.3 50 97.1 46.0 41.7 35.3 48.8 10.4 10.2 1.6 50.2 44.0 0.0 4.7 4.2 0.1
100 100.0 22.7 94.6 92.7 734 9.2 9.1 0.0 98.9 98.5 0.0 5.4 4.3 0.0
200 100.0 13.2 100.0 100.0 91.6 9.1 85 0.0 100.0 100.0 0.0 5.5 4.7 0.0

Notes: see Table 1.1

TABLE 6.2: SEQUENTIAL PROCEDURES FOR DETERMINING THE CO-INTEGRATION RANK. VAR(2) MODEL WITH RANK 79 = 1, IID GAUSSIAN ERRORS

ASYMPTOTIC Unrestricted, IID BS Unrestricted, Wild BS Restricted, IID BS [CRT] Restricted, Wild BS [CRT]
) T r=0 1 2 3,4 r=20 1 2 3,4 RC =20 1 2 3,4 RC =0 1 2 3,4 RC =20 1 2 3,4 RC
0.0 50 2.8 51.2 329 131 41.0 492 85 13 38 49.5 414 8.0 1.2 35 434 51.7 43 06 0.3 49.2 464 3.6 08 0.3
100 0.1 780 181 38 0.7 914 72 07 03 1.0 914 6.8 08 0.3 0.7 937 51 05 0.1 0.8 949 35 0.8 0.1
200 0.0 8.8 11.6 1.6 0.0 939 54 06 0.1 0.0 941 53 0.6 0.0 0.0 946 49 05 0.0 0.0 952 41 0.6 0.0
0.1 50 2.6 51.0 326 138 437 464 84 15 85 524 381 83 13 83 444 509 41 05 0.2 50.7 450 34 09 0.2
100 0.1 768 19.1 4.0 09 911 74 07 26 1.3 91.0 69 08 2.7 0.8 938 51 04 0.1 09 949 34 09 0.1
200 0.0 8.5 11.8 1.7 0.0 939 55 06 0.5 0.0 942 53 06 06 0.0 947 48 0.5 0.0 0.0 952 42 06 0.0
0.2 50 24 51.0 324 14.2 51.5 38.7 84 1.5 253 59.3 318 7.6 13 252 473 48.0 41 06 0.2 53.8 421 33 08 0.2
100 0.0 764 195 4.0 1.8 89.6 78 0.8 293 28 8.9 74 09 29.1 09 936 51 04 0.1 1.2 946 34 08 0.1
200 0.0 86.1 12.1 1.8 0.0 932 6.1 0.7 343 0.0 934 58 0.8 344 0.0 945 50 05 0.0 0.0 952 43 0.6 0.0
0.3 50 24 512 325 139 58.3 31.6 84 1.7 49.7 64.7 25.6 80 1.7 494 498 456 4.1 06 0.2 56.0 400 3.2 09 0.2
100 0.0 763 19.5 4.1 5.5 8.3 84 09 736 73 836 81 1.0 734 1.1 935 50 04 0.1 1.5 942 36 08 0.1
200 0.0 8.1 12.1 1.8 0.0 909 80 1.1 915 0.0 916 73 1.1 916 0.0 945 50 05 0.0 0.0 953 42 06 0.0

Notes: see Table 1.2



TABLE 7.1: EMPIRICAL REJECTION FREQUENCIES OF ASYMPTOTIC AND BOOTSTRAP CO-INTEGRATION
RANK TESTS. VAR(2) MODEL WITH RANK rg = 1, IID ¢(5) ERRORS

Qor QiT Qi Qg i Qry Quid  Qp, Aid

) T ERF ERF ERF ERF RC ERF ERF RC ERF ERF RC ERF ERF RC
0.0 50 97.8 46.5 56.1 49.0 2.3 10.4 9.7 04 54.2 49.5 0.0 5.0 4.8 0.1
100 100.0 24.5 99.2 98.6 0.1 7.8 7.9 0.0 99.3 98.6 0.0 5.5 4.9 0.0

200 100.0 14.0 100.0 100.0 0.0 6.0 6.5 0.0 100.0 100.0 0.0 5.0 51 0.0

0.1 50 97.6 464 54.6 46.5 6.6 10.2 9.6 04 53.4 48.7 0.0 4.8 4.4 0.2
100 100.0 24.1 99.1 98.2 2.4 7.7 7.9 0.0 99.2 98.7 0.0 5.2 4.8 0.0

200 100.0 14.0 100.0 100.0 0.4 5.9 6.5 0.0 100.0 100.0 0.0 5.2 5.2 0.0

0.2 50 97.3 46.5 48.1 40.4 24.3 9.6 9.3 0.8 51.3 46.4 0.1 4.5 4.4 0.2
100 100.0 23.9 97.9 96.6 30.1 8.9 87 0.0 99.0 98.3 0.0 5.1 4.6 0.0

200 100.0 13.6 100.0 100.0 34.3 6.6 6.9 0.0 100.0 100.0 0.0 5.1 5.2 0.0

0.3 50 96.9 46.6 42.2 35.6 49.5 9.6 9.2 1.8 48.8 44.8 0.0 4.5 4.3 0.2
100 100.0 23.2 93.8 91.8 73.6 10.1 9.3 0.0 98.9 98.2 0.0 5.2 4.6 0.0

200 100.0 13.2 100.0 100.0 91.8 8.4 9.1 0.0 100.0 100.0 0.0 5.2 5.2 0.0

Notes: see Table 1.1

TABLE 7.2: SEQUENTIAL PROCEDURES FOR DETERMINING THE CO-INTEGRATION RANK. VAR(2) MODEL WITH RANK ro = 1, IID ¢(5) ERRORS

ASYMPTOTIC Unrestricted, IID BS Unrestricted, Wild BS Restricted, IID BS [CRT] Restricted, Wild BS [CRT]
) T r=0 1 2 3,4 r=20 1 2 3,4 RC =20 1 2 3,4 RC =0 1 2 3,4 RC =20 1 2 3,4 RC
0.0 50 29 515 326 131 439 458 9.0 13 3.7 51.0 397 79 15 3.5 45.8 492 44 06 0.3 50.5 452 3.7 0.7 0.3
100 0.0 768 19.0 4.1 0.8 914 71 08 03 14 90.7 70 09 04 0.7 938 49 05 0.1 14 93.8 40 09 0.2
200 0.0 871 11.0 1.9 0.0 940 54 06 0.0 0.0 935 59 06 0.1 0.0 95.0 46 05 0.0 0.0 949 44 0.7 0.1
0.1 50 2.4 515 328 134 454 445 89 12 7.7 53.5 373 7.8 14 8.0 46.6 48.7 43 05 0.2 51.3 446 35 0.7 0.3
100 0.0 76.1 19.7 4.2 09 914 70 0.7 25 1.8 903 70 10 2.7 0.8 939 47 05 0.1 1.3 939 39 09 0.2
200 0.0 8.6 11.5 1.9 0.0 941 53 06 04 0.0 935 59 06 04 0.0 948 48 0.5 0.0 00 948 44 0.8 0.1
0.2 50 2.2 515 326 13.7 51.9 38.6 83 1.2 252 59.6 31.7 7.2 15 252 48.7 469 39 05 0.3 53.6 424 33 0.7 03
100 0.0 757 19.7 4.6 21 889 80 09 299 34 8.0 76 1.1 307 1.0 939 46 05 0.1 1.7 937 38 09 0.2
200 0.0 86.0 12.0 2.0 0.0 934 58 0.7 344 0.0 93.1 6.2 0.8 34.2 0.0 949 47 05 0.0 0.0 948 44 0.8 0.0
0.3 50 22 513 326 14.0 57.8 329 7.7 1.5 50.3 644 268 7.2 1.6 504 51.2 443 40 04 03 55.2 409 32 0.7 0.2
100 0.0 755 199 45 6.2 837 89 13 736 83 825 80 1.2 737 1.1 936 48 05 0.1 1.8 936 3.7 09 0.1
200 0.0 8.0 12.0 2.0 0.0 916 7.7 0.7 918 0.0 909 82 1.0 919 0.0 948 47 0.6 0.0 00 948 44 0.8 0.0

Notes: see Table 1.2



TABLE 8.1: EMPIRICAL REJECTION FREQUENCIES OF ASYMPTOTIC AND BOOTSTRAP CO-INTEGRATION
RANK TESTS. VAR(2) MODEL WITH RANK rg = 1, GARCH ERRORS

Qor QiT Qi Qg i Qry Quid  Qp, Aid

) T ERF ERF ERF ERF RC ERF ERF RC ERF ERF RC ERF ERF RC
0.0 50 97.3 47.7 58.2 50.4 2.6 10.5 9.2 04 55.6 51.1 0.1 5.4 4.0 0.2
100 100.0 24.8 99.1 98.6 0.1 8.6 7.7 0.0 99.2 98.8 0.0 6.0 51 0.0

200 100.0 14.3 100.0 100.0 0.0 7.2 6.1 0.0 100.0 100.0 0.0 6.2 4.9 0.0

0.1 50 97.5 473 55.3 47.1 7.4 10.4 9.3 0.5 54.7 49.6 0.0 5.0 4.0 0.1
100 100.0 24.9 98.8 98.2 2.8 8.8 7.7 0.0 99.1 98.7 0.0 6.2 51 0.0

200 100.0 14.3 100.0 100.0 0.5 7.0 6.0 0.0 100.0 100.0 0.0 6.1 4.9 0.0

0.2 50 97.2 46.8 49.6 41.7 25.1 10.3 9.2 0.7 52.8 47.3 0.0 4.8 4.1 0.2
100 100.0 24.1 97.5 96.3 30.6 9.3 85 0.0 98.6 98.2 0.0 6.3 51 0.0

200 100.0 14.1 100.0 100.0 34.5 7.6 6.8 0.0 100.0 100.0 0.0 6.1 4.7 0.0

0.3 50 96.7 46.7 44.3 37.9 48.8 9.6 9.0 1.7 50.8 45.5 0.0 4.8 3.9 0.1
100 99.9 235 91.6 88.8 T72.8 10.5 9.5 0.0 98.0 974 0.0 6.3 51 0.0

200 100.0 13.8 100.0 100.0 91.0 9.8 81 0.0 100.0 100.0 0.0 6.0 4.7 0.0

Notes: see Table 1.1

TABLE 8.2: SEQUENTIAL PROCEDURES FOR DETERMINING THE CO-INTEGRATION RANK. VAR(2) MODEL WITH RANK r9 = 1, GARCH ERRORS

ASYMPTOTIC Unrestricted, IID BS Unrestricted, Wild BS Restricted, IID BS [CRT] Restricted, Wild BS [CRT]
) T r=0 1 2 3,4 r=20 1 2 3,4 RC =20 1 2 3,4 RC =0 1 2 3,4 RC =20 1 2 3,4 RC
0.0 50 3.5 49.7 34.0 128 419 477 90 15 3.6 49.6 414 77 13 41 444 50.2 4.7 06 0.2 489 472 3.1 08 0.2
100 0.1 v6.1 198 3.9 09 9.6 77 09 03 1.4 909 69 08 03 0.8 932 55 06 0.0 1.2 938 42 09 0.1
200 0.0 863 11.7 2.0 0.0 928 6.5 0.7 0.2 0.0 939 55 06 0.1 0.0 938 56 06 0.1 0.0 951 40 09 0.1
0.1 50 29 504 338 129 447 451 89 1.3 84 529 382 75 15 89 454 49.7 44 05 0.2 50.4 457 32 0.7 03
100 0.0 756 203 4.1 1.2 900 79 09 29 1.9 905 68 09 3.0 1.0 929 57 05 0.1 1.3 93.7 42 09 0.1
200 0.0 8.9 12.0 21 0.0 930 63 07 0.7 0.0 940 54 06 0.6 0.0 939 56 06 0.1 0.0 951 40 09 0.0
0.2 50 2.7 50.0 341 13.3 50.4 395 89 1.2 26.2 58.3 328 7.6 1.3 258 473 48.0 44 04 0.2 52.7 434 31 08 0.2
100 0.0 752 205 43 26 881 82 1.1 309 3.7 89 74 1.1 305 14 923 58 05 0.1 1.8 932 42 09 0.0
200 0.0 8.7 12.1 22 0.0 924 6.8 0.8 34.7 0.0 932 6.1 0.7 345 0.0 939 55 06 0.1 0.0 953 40 08 0.1
0.3 50 27 49.6 343 13.5 55.7 349 80 14 496 62.1 293 74 1.2 493 49.2 46.1 42 05 0.2 54.5 417 3.1 0.7 0.2
100 0.0 752 202 46 84 81.0 93 12 729 11.2 793 84 1.0 728 20 91.7 58 0.6 0.1 26 923 42 1.0 0.0
200 0.0 8.7 12.1 22 0.0 902 89 09 911 0.0 919 75 0.7 910 0.0 940 55 05 0.1 00 953 39 08 0.1

Notes: see Table 1.2



TABLE 9.1: EMPIRICAL REJECTION FREQUENCIES OF ASYMPTOTIC AND BOOTSTRAP CO-INTEGRATION
RANK TESTS. VAR(2) MODEL WITH RANK 79 = 1, AUTOREGRESSIVE STOCHASTIC VOLATILITY

Qor Qur  QFf Q% Oy Qi QY o
1) T ERF ERF ERF ERF RC ERF ERF RC ERF ERF RC ERF ERF RC
0.0 50 96.2 524 60.1 46.8 7.1 16.0 12.0 4.2 58.6 43.8 1.8 10.5 6.6 3.4
100 99.6 36.2 96.8 90.1 1.5 18.1 9.9 1.1 96.7 90.6 0.7 15.5 6.4 1.1
200 100.0 26.0 100.0 99.5 0.3 16.2 7.2 0.3 100.0 994 0.2 15.1 54 0.3
0.1 50 95.9 51.6 59.7 46.0 15.2 15.3 11.3 4.9 59.5 45.0 1.7 9.9 6.8 3.3
100 99.5 3b.5 95.8 88.8 8.5 18.0 9.9 0.9 96.5 90.1 0.6 15.0 6.2 1.0
200 100.0 25.9 100.0 99.5 4.1 16.1 7.2 0.3 100.0 994 0.2 14.9 5.2 0.2
0.2 50 94.3 49.5 583 46.9 31.3 149 11.0 7.6 588 459 1.6 9.1 6.4 3.0
100 98.8 34.5 91.1 82.1 33.6 18.3 10.1 1.2 94.2 86.3 0.6 14.3 6.2 0.9
200 99.9 255 99.8 984 37.0 17.0 7.4 0.2 99.8 989 0.2 14.8 5.3 0.2
0.3 50 92.7 48.3 57.8 48.3 49.3 14.3 10.0 10.9 57.7 465 1.8 8.5 59 3.2
100 97.7 33.2 83.3 75.2 65.8 18.3 10.1 2.1 90.9 825 0.6 14.0 5.8 0.9
200 99.8 25.1 98.4 94.6 80.2 19.0 8.4 0.2 99.7 98.0 0.2 14.6 54 0.2

Notes: see Table 1.1

TABLE 9.2: SEQUENTIAL PROCEDURES FOR DETERMINING THE CO-INTEGRATION RANK. VAR(2) MODEL WITH RANK r9 = 1, AUTOREGRESSIVE STOCHASTIC VOLATILITY

ASYMPTOTIC Unrestricted, IID BS Unrestricted, Wild BS Restricted, IID BS [CRT] Restricted, Wild BS [CRT]
5§ T r=0 1 2 34 r=0 1 2 34 RC r=0 1 2 34 RC r=0 1 2 34 RC r=0 1 2 34 RC
0.0 50 70 439 342 149 39.9 441 139 20 9.6 53.2 353 101 14 89 414 482 93 1.1 3.9 56.2 389 38 1.1 34
100 22 646 270 6.2 3.2 787 159 22 25 99 803 88 1.0 22 3.3 812 138 1.7 1.7 94 846 50 1.1 1.4
200 0.1 750 212 3.7 0.0 838 143 19 0.7 05 923 64 08 05 0.0 849 135 1.7 0.7 0.6 941 45 09 0.5
0.1 50 5.7 43.5 353 154 403 446 131 2.1 174 54.0 352 95 13 172 40.5 49.7 88 1.0 3.7 55.0 401 39 1.1 3.0
100 1.2 642 279 6.8 43 717 159 22 9.5 11.2 790 88 1.0 9.0 3.5 815 132 18 1.6 99 842 48 10 14
200 0.0 745 21.7 3.9 0.0 839 143 1.8 45 05 923 63 09 43 0.1 8.1 131 1.8 0.6 06 942 44 08 04
0.2 50 44 435 36.2 159 417 436 127 1.9 334 53.1 363 92 14 333 41.2 497 80 10 34 54.1 412 36 1.1 2.7
100 0.5 636 289 7.0 89 729 159 23 34.1 179 721 89 1.1 341 5.8 799 126 1.7 14 13.7 806 48 1.0 1.1
200 0.0 742 21.7 4.1 0.2 828 149 21 371 1.6 91.0 65 1.0 37.1 0.2 8.0 131 1.8 0.5 1.1 937 44 09 04
0.3 50 3.8 43.7 364 16.1 422 436 123 1.9 513 5L.7 387 82 1.5 50.8 423 492 76 0.8 3.5 53.5 422 33 10 3.0
100 04 634 29.0 7.2 16.7 65.1 159 24 66.4 248 653 88 1.1 66.2 91 769 123 17 14 176 772 43 10 1.1
200 0.0 740 21.7 43 1.7 794 16.7 23 80.3 54 8.2 74 1.0 80.3 0.3 8.1 130 1.6 0.6 20 926 45 09 04

Notes: see Table 1.2



TABLE 10.1: EMPIRICAL REJECTION FREQUENCIES OF ASYMPTOTIC AND BOOTSTRAP CO-INTEGRATION

RANK TESTS. VAR(2) MODEL WITH RANK r9 = 1, SINGLE VOLATILITY BREAK

Qor Qir  QF Qv oy Qi QY o
1) T ERF ERF ERF ERF RC ERF ERF RC ERF ERF RC ERF ERF RC
0.0 50 97.5 53.6 65.1 53.2 14.8 12.8 9.9 8.0 65.6 49.8 2.5 8.9 6.2 7.1
100 99.9 41.8 98.9 95.5 2.5 18.8 10.0 0.3 98.9 95.1 0.1 154 6.8 0.2
200 100.0 34.2 100.0 100.0 0.1 19.9 7.5 0.0 100.0 100.0 0.0 18.7 59 0.0
0.1 50 97.3 53.6 63.3 52.0 19.8 12.5 9.8 8.3 65.9 49.0 2.6 8.8 6.1 6.6
100 99.9 41.9 98.8 94.6 9.1 18.7 10.3 0.2 98.9 94.5 0.1 15.6 6.9 0.2
200 100.0 34.3 100.0 100.0 3.4 20.0 7.6 0.0 100.0 100.0 0.0 18.7 59 0.0
0.2 50 97.2 52.3 60.1 479 314 11.7 8.9 9.2 64.8 47.3 2.6 8.6 57 64
100 99.9 414 97.8 919 31.5 18.7 10.2 0.3 98.6 94.0 0.1 15.5 6.7 0.1
200 100.0 34.3 100.0 100.0 34.5 20.9 7.7 0.0 100.0 100.0 0.0 18.9 56 0.0
0.3 50 96.9 514 57.2 45.5 45.7 11.3 84 11.3 63.4 46.5 2.7 8.1 54 64
100 99.9 41.1 95.9 86.6 61.2 18.7 10.3 0.5 98.7 934 0.1 15.8 6.6 0.2
200 100.0 34.0 100.0 100.0 79.9 21.5 8.6 0.0 100.0 100.0 0.0 18.4 5.7 0.0

Notes: see Table 1.1

TABLE 10.2: SEQUENTIAL PROCEDURES FOR DETERMINING THE CO-INTEGRATION RANK. VAR(2) MODEL WITH RANK 79 = 1, SINGLE VOLATILITY BREAK

ASYMPTOTIC Unrestricted, IID BS Unrestricted, Wild BS Restricted, IID BS [CRT] Restricted, Wild BS [CRT]

) T r=0 1 2 3,4 r=20 1 2 3,4 RC =20 1 2 3,4 RC =20 1 2 3,4 RC r=20 1 2 3,4 RC
0.0 50 2.5 439 40.5 13.1 349 524 119 09 224 46.9 435 88 0.9 215 344 56.7 84 05 89 50.2 43.7 55 06 79
100 0.1 581 351 6.8 1.1 80.1 177 10 6.6 45 8.4 93 08 5.1 1.1 835 147 0.8 28 49 883 63 05 14

200 0.0 658 294 48 0.0 80.1 182 1.7 25 0.0 925 68 0.7 1.2 0.0 813 171 15 2.0 0.0 941 53 06 0.7

0.1 50 2.7 43.8 40.7 129 36.7 509 11.7 0.8 26.7 48.0 426 8.6 0.9 258 341 571 83 05 83 51.0 431 53 06 7.3
100 0.1 580 35.0 6.9 1.2 80.2 176 1.0 13.0 54 844 95 0.7 113 1.1 833 147 09 29 5.5 877 64 05 1.5

200 0.0 65.7 29.6 4.7 0.0 80.0 184 1.7 5.7 0.0 925 6.8 0.7 44 0.0 813 172 15 2.0 0.0 942 53 06 0.7

0.2 50 28 449 39.8 125 39.9 485 109 0.7 374 52.1 394 7.7 0.8 36.6 352 56.2 81 0.5 82 52.7 417 52 04 7.2
100 0.1 585 346 6.8 22 791 175 1.2 345 81 817 93 09 333 14 832 146 09 29 6.0 873 6.2 05 1.6

200 0.0 658 29.6 4.7 0.0 79.1 19.1 1.7 36.0 0.0 923 6.8 09 353 0.0 81.1 175 14 19 0.0 944 51 05 0.7

0.3 50 3.1 455 393 121 428 46.1 104 0.7 50.5 545 373 74 0.9 499 36.6 553 7.7 04 87 53.5 412 50 03 73
100 0.1 588 345 6.6 41 771 174 1.3 629 135 763 94 0.9 622 1.3 83.0 148 09 3.0 6.6 8.8 6.0 0.6 1.7

200 0.0 66.0 294 4.6 0.0 785 199 1.7 80.4 0.0 914 7.7 09 80.1 0.0 816 171 13 2.0 00 943 51 06 0.7

Notes: see Table 1.2
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