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Abstract

In a recent paper Cavaliere et al. (2012) develop bootstrap implementations of the (pseudo-)

likelihood ratio [PLR] co-integration rank test and associated sequential rank determination pro-

cedure of Johansen (1996). The bootstrap samples are constructed using the restricted parameter

estimates of the underlying VAR model which obtain under the reduced rank null hypothesis. They

propose methods based on an i.i.d. bootstrap re-sampling scheme and establish the validity of their

proposed bootstrap procedures in the context of a co-integrated VAR model with i.i.d. innovations.

In this paper we investigate the properties of their bootstrap procedures, together with analo-

gous procedures based on a wild bootstrap re-sampling scheme, when time-varying behaviour is

present in either the conditional or unconditional variance of the innovations. We show that the

bootstrap PLR tests are asymptotically correctly sized and, moreover, that the probability that

the associated bootstrap sequential procedures select a rank smaller than the true rank converges

to zero. This result is shown to hold for both the i.i.d. and wild bootstrap variants under con-

ditional heteroskedasticity but only for the latter under unconditional heteroskedasticity. Monte

Carlo evidence is reported which suggests that the bootstrap approach of Cavaliere et al. (2012)

signi�cantly improves upon the �nite sample performance of corresponding procedures based on

either the asymptotic PLR test or an alternative bootstrap method (where the short run dynamics

in the VAR model are estimated unrestrictedly) for a variety of conditionally and unconditionally

heteroskedastic innovation processes.
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1 Introduction

Sequential likelihood-based procedures for the determination of the co-integration rank in VAR systems

of variables integrated of order 1 [I(1)], see Johansen (1996), are widely used in empirical research.

However, it is now well understood that the �nite sample properties of these procedures, when based

on asymptotic inference, can be quite poor; see, in particular, Johansen (2002) and the references

therein. It is also well-known that the bootstrap, when correctly implemented, can be an important

device to compute critical values of asymptotic tests in samples of �nite size thereby delivering tests

with empirical rejection frequencies closer to the nominal level. As a consequence, it is not surprising

that there has been an increasing interest in using bootstrap methods in determining the co-integration

rank in vector autoregressive models. For co-integrated VAR models with independent and identically

distributed (i.i.d.) innovations, see, most notably, Swensen (2006) and Cavaliere, Rahbek and Taylor

(2012); for VAR models with potentially heteroskedastic innovations, see Cavaliere, Rahbek and Taylor

(2010a, 2010b).

A key feature of the bootstrap algorithms proposed in Swensen (2006) and Cavaliere et al. (2010a,

2010b) is that they combine restricted (where the null co-integrating rank is imposed) estimates of the

long-run parameters of the model with unrestricted parameter estimates of the short run parameters

in the bootstrap recursion used to generate the bootstrap sample data. As is recognised in Swensen

(2009), where the null hypothesis imposes a co-integration rank r which is smaller than the true

rank, r0 say, the potential arises for the resulting bootstrap samples to be non-I(1) (they can, for

example, be explosive or admit too many roots on the unit circle), thereby invalidating the use of

the bootstrap, even asymptotically. Swensen (2009) shows that for this not to happen a number of

auxiliary conditions must be imposed on the (unknown) parameters of the data generating process

(DGP).

In a recent paper, for the case of co-integrated VAR models with i.i.d. innovations, Cavaliere

et al. (2012) [CRT hereafter] show that this problem can be solved by considering an alternative

bootstrap scheme where the bootstrap recursion uses parameter estimates of the short run and long

run parameters both of which are obtained under the null co-integrating rank. CRT demonstrate

that even when r < r0 these estimates converge to pseudo-true values which ensure that the resulting

bootstrap data are (at least in large samples) I(1) with co-integrating rank r. As a consequence

they show that the resulting bootstrap tests are asymptotically valid, attaining the same �rst-order

limit null distribution as the original pseudo likelihood ratio [PLR] statistic both when r = r0 and,

crucially, when r < r0, without the need for any auxiliary conditions to hold on the underlying DGP.

Given that the PLR statistic diverges when r < r0 they then show that this result ensures that the

associated bootstrap analogue of Johansen's sequential procedure is consistent in the usual sense that

the probability of choosing a rank smaller than the true rank will converge to zero. Like Swensen

(2006), the procedures proposed in CRT are based on an i.i.d. re-sampling scheme.

In this paper we analyse the properties of the bootstrap PLR tests and associated sequential pro-

cedures proposed in CRT in cases where the innovations may display time-varying behaviour in either
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their conditional or unconditional variances, of the form considered in Cavaliere et al. (2010a, 2010b).

The former, embodied in a martingale di�erence assumption, permits, for example, certain types of

GARCH models for the volatility process, while the latter allows, for example, single and multiple

abrupt (co-)variance breaks, smooth transition (co-)variance breaks, and trending (co-)variances. In

our analysis we will consider procedures based on an i.i.d. bootstrap re-sampling scheme, as outlined

in CRT, together with analogous procedures based on a wild bootstrap re-sampling scheme. We show

that the wild bootstrap analogues of the algorithms proposed in CRT are asymptotically valid in both

cases, again attaining the same �rst-order limit null distribution as the PLR statistic when r � r0,

and again without the need for any auxiliary conditions to hold on the underlying DGP. The same

result is shown to hold for the i.i.d. bootstrap implementation of the algorithms for the conditionally

heteroskedastic case considered. In contrast, in the non-constant volatility case this result is only at-

tainable using the wild bootstrap versions of CRT's algorithms. These are particularly useful results

since the Bartlett-corrected rank tests of Johansen (2002), which constitute an alternative approach

to the bootstrap to improve the �nite sample properties of the tests, are not appropriate when the

errors are heteroskedastic.

The paper is organised as follows. Section 2 outlines our heteroskedastic co-integrated VAR model.

Section 3 outlines the pseudo-LR co-integration rank tests and associated sequential procedures of

Johansen (1996), outlining the large sample properties of these under heteroskedastic innovations.

The bootstrap algorithms proposed by CRT are outlined in section 4, and here it is brie
y shown

how these di�er from the corresponding bootstrap algorithms from Swensen (2006). The large sample

properties of the bootstrap procedures under heteroskedastic innovations are established in section 5.

The results of a Monte Carlo study are given in section 6. Section 7 concludes. Mathematical proofs

are contained in the Appendix.

In the following
w
! denotes weak convergence,

p
! convergence in probability, and

w
!p weak con-

vergence in probability (Gin�e and Zinn, 1990; Hansen, 1996), in each case as T !1; I(�) denotes the

indicator function; x := y indicates that x is de�ned by y; b�c denotes the integer part of its argument;

CRm�n [0; 1] denotes the space of m� n matrices of continuous functions on [0; 1]; DRm�n [0; 1] denotes

the space of m � n matrices of c�adl�ag functions on [0; 1]; Ik denotes the k � k identity matrix and

0j�k the j � k matrix of zeroes; the space spanned by the columns of any m� n matrix a is denoted

as col(a); if a is of full column rank n < m, then �a := a (a0a)�1 and a? is an m� (m� n) full column

rank matrix satisfying a0?a = 0; for any square matrix, a, jaj is used to denote its determinant, kak the

norm kak2 := tr fa0ag and � (a) its spectral radius (that is, the maximal modulus of the eigenvalues

of a); for any vector, x, kxk denotes the usual Euclidean norm, kxk := (x0x)1=2. Finally, P � de-

notes the bootstrap probability measure, i.e. conditional on the original sample; similarly, E� denotes

expectation under P �.
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2 The Heteroskedastic Co-integrated VAR Model

Following Johansen (1996), we consider the case where the p-dimensional observations fXtg satisfy

the kth order reduced rank vector autoregressive (VAR) model

�Xt = ��0Xt�1 +
k�1X
i=1

�i�Xt�i + ��0Dt + �dt + "t; t = 1; :::; T (2.1)

where Xt := (X1t; :::; Xpt)
0, "t := ("1t; :::; "pt)

0, and where the initial values, X1�k; :::; X0, are taken

to be �xed in the statistical analysis. The deterministic variables are assumed to satisfy one of the

following cases (see, e.g., Johansen, 1996): (i) dt = 0, Dt = 0 (no deterministic component); (ii)

Dt = 1, dt = 0 (restricted constant), or (iii) Dt = t, dt = 1 (restricted linear trend). The innovation

process f"tg is taken to satisfy one of the following three assumptions:

Assumption V The innovations f"tg are independent and identically distributed with mean zero and

full-rank variance matrix �, and where E k"tk
4 � K <1.

Assumption V' The innovations f"tg form a martingale di�erence sequence with respect to the

�ltration Ft; where Ft�1 � Ft for t = :::;�1; 0; 1; 2; :::, satisfying: (i) the global homoskedasticity

condition:

1

T

TX
t=1

E
�
"t"

0
tjFt�1

� p
! � > 0, (2.2)

and (ii) E k"tk
4 � K <1.

Assumption V" The innovations f"tg are such that "t = �tzt, where zt is p-variate i.i.d., zt � (0; Ip)

with E kztk
4 � K < 1, and where the matrix �t is non-stochastic and satis�es �t := � (t=T ) for

all t = 1; :::; T , where � (�) 2DRp�p [0; 1]. Moreover it is assumed that � (u) := � (u)� (u)0 is positive

de�nite for all u 2 [0; 1].

Remark 1 Assumption V is that considered by Johansen (1996) and Swensen (1996). Assumption V'

is taken from Cavaliere et al. (2010a) and allows for, among other things, models with deterministic

periodic heteroskedasticity and for multivariate versions of the stable GARCH, EGARCH, AGARCH,

GJR-GARCH, and autoregressive stochastic volatility models of the type considered in Gon�calves and

Kilian (2004,p.99); see also Section 6. Notice that condition (i) of Assumption V' imposes neither

strict nor second-order stationarity on "t, but rather imposes a so-called global stationarity or global

homoskedasticity condition; see e.g. Davidson (1994,pp.454-455). Assumption V" implies that the

elements of the innovation covariance matrix �t := �t�
0
t are only required to be bounded and to

display a countable number of jumps, therefore allowing for an extremely wide class of potential

models for the behaviour of the covariance matrix of "t. Models of single or multiple variance or

covariance shifts, satisfy Assumption V" with � (�) piecewise constant. For instance, denoting the

(i; j)th element of �(u) by �ij(u), the case of a single break at time b�T c in the covariance E ("it"jt)

obtains for �ij (u) = �0
ij + (�1

ij ��0
ij)I (u � �). Piecewise a�ne functions are also permitted, thereby

allowing for variances which follow a (possibly) broken trend, as are smooth transition variance shifts.
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The requirement within Assumption V"that � (�) is non-stochastic is made in order to simplify the

analysis, but can be generalised to allow for cases where � (�) is stochastic and independent of zt; see

Remark 2.2 of Cavaliere et al. (2010b) for further details.

In what follows we will often refer to the case where the parameters of (2.1) satisfy the `I(1; r)

conditions'. These are formally de�ned below.

De�nition 1 If: (a) the characteristic polynomial associated with (2.1) has p� r roots equal to 1 and

all other roots outside the unit circle, and (b) � and � have full column rank r, then the parameters

in (2.1) will be said to satisfy the `I(1; r) conditions'.

Under the conditions given in De�nition 1, and coupled with either Assumption V, V' or V", Xt

is I(1) with co-integration rank r. Here we are using the de�nition of I(1) adopted by Cavaliere et

al. (2010b) which is de�ned such that the common trend component of the data admits a functional

central limit theorem. Under conditions (a) and (b) of De�nition 1 and if Assumption V holds, then

the co-integrating relations �0Xt �E
�
�0Xt

�
will then be stationary, while under Assumption V' they

will be globally stationary. Under Assumption V", however, stationarity does not hold in general on

the co-integrating relations, due to the time-variation present in �t; nonetheless, �
0Xt � E

�
�0Xt

�
is

stable, in the sense that it is free of stochastic trends.

3 Pseudo Likelihood Ratio Tests

The well-known PLR test1 of Johansen (1996) for the hypothesis of co-integration rank (less than

or equal to) r in (2.1), denoted H (r), against H (p), rejects for large values of the trace statistic,

Qr;T := �T
Pp

i=r+1 log(1 � �̂i), where �̂1 > : : : > �̂p are the largest p solutions to the eigenvalue

problem, ���S11 � S10S
�1
00 S01

�� = 0, (3.1)

where Sij := T�1
PT

t=1RitR
0
jt, i; j = 0; 1, withR0t andR1t respectively denoting �Xt and

�
X 0

t�1; Dt

�0
,

corrected (by OLS) for �Xt�1; :::;�Xt�k+1 and dt. The sequential testing procedure based on Qr;T

involves, starting with r = 0, testing in turn H(r) against H(p) for, r = 0; :::; p� 1, until, for a given

value of r, the asymptotic p-value associated with Qr;T , exceeds a chosen (marginal) signi�cance level.

Suppose that Xt in (2.1) satis�es De�nition 1 for r = r0; that is, the true co-integrating rank is r0

and (2.1) satis�es the I(1; r0) conditions. Then, under either Assumption V (see Johansen, 1996) or

Assumption V' (see, Cavaliere et al., 2010a) it holds that

Qr0;T
w
! tr(Qr0;1) (3.2)

1By which we mean the test based on the likelihood which obtains under the assumption that "t in (2.1) are Gaussian

i.i.d. disturbances. The associated estimators from (2.1) under this assumption will, correspondingly, be referred to as

pseudo maximum likelihood estimators.
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where, for a generic argument r,

Qr;1 :=

Z 1

0
dBp�r(u)Fp�r(u)

0

�Z 1

0
Fp�r(u)Fp�r(u)

0du

��1 Z 1

0
Fp�r(u)dBp�r(u)

0 (3.3)

where Bp�r(�) is a (p� r)-variate standard Brownian motion, and where either: (i) in the no deter-

ministics case, Fp�r := Bp�r; (ii) in the restricted constant case, Fp�r := (B0
p�r; 1)

0, or, (iii) in the

restricted linear trend case, Fp�r := (B0
p�r; uj1)

0, where ajb := a(�)�
R
a(s)b(s)0ds(

R
b(s)b(s)0ds)�1b(�)

denotes the projection residuals of a onto b. Critical values from these (pivotal) limiting null distri-

butions are provided in Johansen (1996). Under Assumption V", however, Cavaliere et al. (2010b)

establish that

Qr0;T
w
! tr(QH

r0;1) (3.4)

where, again for a generic argument r, QH
r;1 is de�ned by the right hand side of (3.3) but replacing

the standard Brownian motion, Bp�r(u), throughout by the the (p � r)-variate stochastic volatility

process

~Mp�r (u) :=
�
�0?��?

��1=2
�0?

Z u

0
�(s)dBp(s)

where � :=
R 1
0 � (s) ds is the (asymptotic) average innovation variance. This limiting null distribution

is in general non-pivotal, its form depending on the spot volatility process, �(�). Consequently, infer-

ence using the standard trace statistics will not in general be pivotal under Assumption V" if p-values

are retrieved on the basis of the tabulated distributions which apply under Assumptions V and V'.

Under the I(1; r0) conditions, and regardless of whether Assumption V, V' or V" holds, the

r0 largest eigenvalues solving (3.1), �̂1; : : : ; �̂r0 , converge in probability to positive numbers, while

T �̂r0+1; : : : ; T �̂p are of Op(1). Consequently, under any of Assumptions V, V' or V" the standard

asymptotic test based on Qr;T will be consistent at rate Op(T ) if r0 is such that r0 > r. This

implies, therefore, that under either Assumption V or V' the sequential approach to determining the

co-integration rank outlined above will be consistent in the usual sense that it will lead to the selection

of the correct co-integrating rank with probability (1 � �) in large samples if a marginal signi�cance

level of � is chosen. However, under Assumption V" this will not in general be true, unless critical

values from the limiting distribution on the right hand side of (3.2) are used: the standard sequential

approach to determining the co-integration rank will therefore not in general lead to the selection of

the correct co-integrating rank with probability (1� �) even in large samples.

To conclude this section we detail the large sample properties of the pseudo maximum likelihood

estimates [PMLE] of the parameters of (2.1) that obtain under H(r) under each of Assumptions V,

V' and V". To that end, let v̂ := (v̂1; v̂2; :::; v̂p) denote the eigenvectors from (3.1), viz,

v̂0S11v̂ = Ip, v̂0S10S
�1
00 S01v̂ = �̂p := diag(�̂1; �̂2; :::; �̂p) . (3.5)

The (uniquely de�ned) Gaussian PMLE of �, �̂
(r)
, may then be written as �̂

(r)
:= v̂K

(r)
p , where

K
(r)
p := (Ir; 0r�(p�r))

0, is a selection matrix indexed by r and p. When deterministic terms are

included, �̂
#(r)

:= (�̂
(r)0

; �̂(r)0)0 = v̂K
(r)
p+1. The remaining estimators �̂(r);b�(r)1 ; : : : ; b�(r)k�1 and �̂

(r)
are
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then obtained by OLS regression, as in Johansen (1996). We denote the PMLE for (2.1) under H(r)

by �̂
(r)

:= f�̂(r); �̂
(r)
; b�(r)1 ; :::; b�(r)k�1; �̂

(r); �̂
(r)
; �̂(r)g.

Under the I(1; r0) conditions, Johansen (1996) establishes that under Assumption V, �̂
(r) p

! �,

where � := f�; �;�1; :::; �k�1; �; �;�g. Cavaliere et al. (2010a) show that this result also holds under

Assumption V', provided � is de�ned as in (2.2). Under Assumption V", Cavaliere et al. (2010b)

prove that, again under the I(1; r0) conditions, �̂
(r) p

! ��, where �� := f�; �;�1; :::;�k�1; �; �;�g

with � now equal to
R 1
0 � (s) ds. Under Assumption V, CRT demonstrate the important additional

result, which is pivotal to showing the validity of their proposed bootstrap procedure, that when

H(r) imposes a co-integration rank which is smaller than the true rank, r0 say, such that �̂
(r) p

! �
(r)
0 ,

where �
(r)
0 := f�

(r)
0 ; �

(r)
0 ;�

(r)
1;0; :::;�

(r)
k�1;0; �

(r)
0 ; �

(r)
0 ;�

(r)
0 g is a vector of pseudo-true parameters which

have the key property that they satisfy the I(1; r) conditions. In section 5 we will show that this

result also holds under either Assumption V' or V", allowing us to establish the asymptotic validity

of the bootstrap PLR tests and associated sequential procedure proposed in CRT, adapted to use a

wild bootstrap re-sampling scheme where appropriate, when the innovations are heteroskedastic.

4 Bootstrap Algorithms

In Algorithm 1 we detail the bootstrap implementation of the PLR test for H(r) against H(p). Where

the i.i.d. re-sampling scheme, (a), is adopted in step (iii), this algorithm coincides with Algorithm 1

of CRT.

Algorithm 1:

(i) Estimate model (2.1) under H(r) using Gaussian PMLE yielding the estimates �̂
(r)
, �̂(r); �̂(r),b�(r)1 ; ::::; b�(r)k�1 and �(r), together with the corresponding residuals, "̂r;t.

(ii) Check that the equation jÂ(r) (z) j = 0, with Â(r) (z) := (1� z) Ip��̂
(r)�̂

(r)0
z�
Pk�1

i=1 �̂
(r)
i (1� z) zi,

has p� r roots equal to 1 and all other roots outside the unit circle. If so, proceed to step (iii).

(iii) Construct the bootstrap sample recursively from

�X�
r;t = �̂(r)�̂

(r)0
X�

r;t�1 +
k�1X
i=1

b�(r)i �X�
r;t�i + �̂(r)�̂(r)0Dt + �̂

(r)
dt + "�r;t; t = 1; :::; T (4.1)

initialised at X�
r;j = Xj , j = 1�k; :::; 0; and with the T bootstrap errors "�r;t generated using the

re-centred residuals, "̂cr;t := "̂r;t � T�1
PT

i=1 "̂r;i, for either:

(a) the i.i.d. bootstrap, such that "�r;t := "̂cr;Ut , where Ut, t = 1; :::; T is an i.i.d. sequence of

discrete uniform distributions on f1; 2; :::; Tg, or

(b) the wild bootstrap, where for each t = 1; :::; T , "�r;t := "̂cr;twt, where wt, t = 1; :::; T , is an

i.i.d. N(0,1) sequence.
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(iv) Using the bootstrap sample, fX�
r;tg, and denoting by �̂

�
1 > : : : > �̂

�
p the ordered solutions to

the bootstrap analogue of the eigenvalue problem in (3.1), compute the bootstrap LR statistic

Q�
r;T := �T

Pp
i=r+1 log(1 � �̂

�
i ). De�ne the corresponding p-value as p�r;T := 1 � G�

r;T (Qr;T ),

G�
r;T (�) denoting the conditional (on the original data) cdf of Q�

r;T .

(v) The bootstrap test of H(r) against H(p) at level � rejects H(r) if p�r;T � �.

Remark 2 The recursive scheme in (4.1) di�ers from the corresponding bootstrap recursion in

Swensen (2006) and Cavaliere et al. (2010a, 2010b) which takes the form

�X�
r;t = �̂(r)�̂

(r)0
X�

r;t�1 +
k�1X
i=1

b�(p)i �X�
r;t�i + �̂(r)�̂(r)0Dt + �̂

(p)
dt + "�p;t; t = 1; :::; T (4.2)

where b�(p)1 ; : : : ; b�(p)k�1 and �̂
(p)

are now the estimates of the short run matrices �1; : : : ;�k�1 and �,

respectively, from estimating (2.1) unrestrictedly, i.e. under H (p). This di�erence is crucial since

showing that the bootstrap test of H(r) is consistent when r < r0, requires that the bootstrap

data still satisfy the I(1; r) conditions in large samples. As acknowledged in Swensen (2009), this is

not guaranteed, even asymptotically, when using the recursion in (4.2), unless a number of auxiliary

restrictions, labelled Assumption 2 in Swensen (2009), hold on the parameters of (2.1); see also Remark

6 of CRT. CRT show that these restrictions are not needed if the bootstrap recursion in (4.1) is used

since it always delivers an I(1) system with r � r0 co-integrating vectors in the limit, regardless of

the true co-integration rank, r0.

Remark 3 Although, as CRT show, Algorithm 1 without the inclusion of step (ii) ensures that the

bootstrap data satisfy the I(1; r) conditions in the limit, this could fail in small samples. Consequently,

the role of step (ii) is to check that the bootstrap samples will indeed be I(1) with co-integration rank

r. Unreported simulations for the case where we continue to step (iii) of Algorithm 1 regardless of

whether the root check condition in step (ii) is failed or not suggest, reassuringly, that this leads to no

deterioration in the �nite sample performance of the resulting bootstrap tests relative to the results

reported here. Analogous conditions to those in step (ii) are also checked in step (iii) of Algorithm 1

in Swensen (2006) for the recursion in (4.2). Notice that step (ii) will be failed with probability one

in Algorithm 1 of Swensen (2006) unless Assumption 2 of Swensen (2009) is satis�ed.

Remark 4 In practice, the cdf G�
r;T (�) required in Step (iv) of Algorithm 1 will be unknown, but

can be approximated in the usual way through numerical simulation; see, inter alia, Hansen (1996),

Davidson and MacKinnon (2000) and Andrews and Buchinsky (2000). This is achieved by generating

B (conditionally) independent bootstrap statistics, Q�
r;T :b, b = 1; :::; B, computed as in Algorithm 1

above. The simulated bootstrap p-value is then computed as ~p�r;T := B�1
PB

b=1 I(Q
�
r;T :b > Qr;T ), and

is such that ~p�r;T
a:s:
! p�r;T as B !1.

We conclude this section by outlining in Algorithm 2 the bootstrap sequential algorithm for de-

termining the co-integrating rank. Again for re-sampling scheme (a) in step (iii) of Algorithm 1, this

replicates Algorithm 2 of CRT.
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Algorithm 2: Starting from r = 0 perform the following steps:

(i){(iv) Same as in Algorithm 1.

(v) If p�r;T exceeds the signi�cance level, �, set r̂ = r, otherwise repeat steps (i){(iv) testing the null

of rank (r + 1) against rank p if r + 1 < p, or set r̂ = p if r + 1 = p.

5 Asymptotic Analysis

CRT establish the large sample behaviour of the PLR tests and associated sequential procedure from

Algorithms 1 and 2 respectively, for any I(1) DGP satisfying the conditions stated in Swensen (2006).

These conditions are comprised of those made for the standard asymptotic test in Johansen (1996),

Assumption 1 below and Assumption V, coupled with the additional assumption from Swensen (2006,

Lemma 3), stated as Assumption 2 below, that eigenvalues from (3.1) are distinct in the limit. Cru-

cially, CRT show that the asymptotic validity of their bootstrap procedures do not require any further

conditions, such as Assumption 2 of Swensen (2009), to hold.

Assumption 1 The parameters in (1) satisfy the I(1,r0) conditions.

Assumption 2 The limiting non-zero roots of (3.1) are distinct.

Precisely, CRT demonstrate that, under Assumption V and Assumptions 1 and 2, for any r � r0,

Q�
r;T

w
!p tr(Qr;1), where Qr;1 is as de�ned in (3.3), for the case where the i.i.d. bootstrap re-sampling

design is used in step (iii) of Algorithm 1. It is straightforward to show that the same result holds

where the wild bootstrap is used in step (iii) of Algorithm 1; indeed this results follows as a special

case of the results given below noting that Assumption V is a special case of both Assumption V' and

Assumption V". An immediate consequence of this result and the results previously detailed for the

asymptotic PLR tests, is that the bootstrap test based on Q�
r;T will be asymptotically correctly sized

under the null hypothesis (r = r0), and will be consistent for all r < r0; that is, p
�
r0;T

w
! U [0; 1] and2

p�r;T := 1 � G�
r;T (Qr;T )

p
! 0, for all r < r0. CRT show that these results obtain by virtue of the fact

that under Assumption V the PMLE, �̂
(r)
, used to generate the bootstrap samples in Algorithm 1

asymptotically satis�es the I(1; r) conditions, even when an incorrect rank r < r0 is imposed.

Our aim in this section is to prove that the bootstrap PLR tests from Algorithm 1 are also

asymptotically valid under either Assumption V' or Assumption V", i.e. that they are asymptotically

correctly sized under the null and consistent under the alternative in the presence of heteroskedasticity

in the innovations.3 In the light of the results in CRT it is clear that in order to do so we must �rst

2Notice that if the p-value of a test converges in large samples to a uniform distribution on [0; 1] under the null

hypothesis, then for any chosen signi�cance level �, as the sample size diverges the probability of rejecting the null

hypothesis converges to �; i.e., the test has asymptotic size �, as required.
3It is worth noting that the large sample results that we establish for the wild bootstrap version of Q�

r;T in this

section are obtained under weaker conditions than were required in Cavaliere et al (2010b) who, in deriving the large

sample properties of their proposed wild bootstrap test, additionally required the innovations, zt, in Assumption V" to

be symmetrically distributed.
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establish that �̂
(r)

also satis�es the I(1; r) conditions in the limit, even when an incorrect rank r < r0

is imposed, under both Assumption V' and V". This is done in Lemma 1.

Lemma 1 Let fXtg be generated as in (2.1) under Assumptions 1, 2 and either V' or V". Then:

(i) for any r � r0 and as T ! 1, �̂
(r) p

! �
(r)
0 , with the vector of pseudo-true parameters, �

(r)
0 :=

f�
(r)
0 ; �

(r)
0 ;�

(r)
1;0; :::;�

(r)
k�1;0; �

(r)
0 ; �

(r)
0 ;�

(r)
0 g, de�ned in the Appendix; and (ii) the pseudo-true parameters

�
(r)
0 satisfy the I(1; r) conditions.

An important consequence of Lemma 1 for the bootstrap recursion in (4.1) is stated in the following

proposition, which establishes that for any r � r0 the bootstrap sample generated by (4.1) is I(1)

with co-integration rank r in large samples.

Proposition 1 Let fXtg be generated as in (2.1) under Assumptions 1 and 2, and let the bootstrap

sample be generated as in Algorithm 1, for any r � r0. Then the following results hold:

(i) Under either Assumption V' or V", and for either the i.i.d. or wild bootstrap re-sampling design

in step (iii) of Algorithm 1,

X�
r;t = Ĉ(r)

tX
i=1

"�r;i + �̂ r;t + Sr;tT
1=2 , (5.1)

where Ĉ(r) := �̂
(r)
?

�
�̂
(r)0
? �̂(r)�̂

(r)
?

��1
�̂
(r)0
? with �̂(r) :=

Pk�1
i=1 �̂

(r)
i � I, and where Sr;t is such that

P � (maxt=1;:::;T kSr;tk > �)
p
! 0 for all � > 0. If there are either no deterministics or a restricted

constant in (2.1) (i.e. cases (i) and (ii)), then �̂ r;t = 0, while in the restricted linear trend case

(case (iii)), T�1�̂ r;bTuc
w
! �

(r)
0 u, where �

(r)
0 := C

(r)
0 �

(r)
0 + (C

(r)
0 �

(r)
0 � Ip)��

(r)
0 �

(r)0

0 , where C
(r)
0 :=

�
(r)
0?(�

(r)0
0? �

(r)
0 �

(r)
0?)

�1�
(r)0
0? is of rank (p� r) � (p� r0), and where �

(r)
0 :=

Pk�1
i=1 �

(r)
0;i � Ip.

(ii) Under Assumption V', for either the i.i.d. or wild bootstrap re-sampling design in step (iii) of

Algorithm 1,

T�1=2Ĉ(r)

bTucX
i=1

"�r;i
w
!p C

(r)
0 Wp (u) ; u 2 [0; 1] (5.2)

where Wp is a p-dimensional Brownian motion with covariance matrix 

(r)
0 , and where C

(r)
0 is as

de�ned in part (i).

(iii) Under Assumption V"; for the wild bootstrap re-sampling design in step (iii)(b) of Algorithm 1

only,

T�1=2Ĉ(r)

bTucX
i=1

"�r;i
w
!p C

(r)
0 M (u) ; u 2 [0; 1]; (5.3)

where the p-variate stochastic process is given by, M (�) =
R �
0 � (s) dBp (s), with Bp a p-dimensional

standard Brownian motion, and C
(r)
0 is again as de�ned in part (i).

Remark 5 The proof of Proposition 1 exploits the fact that, by Lemma 1(i), for any rank r � r0

the bootstrap recursion in (4.1) coincides, in the limit, with the recursion �X�
r;t = �

(r)
0 �

(r)0
0 X�

r;t�1 +Pk�1
i=1 �

(r)
i;0�X

�
t�i + �

(r)
0 �

(r)0
0 Dt + �

(r)
0 dt + "�r;t which, by Lemma 1(ii), satis�es the I(1; r) conditions.
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This property implies that the bootstrap sample is asymptotically I(1) with r co-integrating relations,

as the results in (5.2) and (5.3) coupled with (5.1) formally establish under Assumptions V' and V",

respectively.

Using Lemma 1 and Proposition 1, we now establish the asymptotic behaviour of the bootstrap

trace statistic Q�
r;T of Algorithm 1 under either Assumption V' or Assumption V". The stated results

hold for any r � r0.

Proposition 2 Let the bootstrap statistic Q�
r;T be generated as in Algorithm 1. Then, under the

conditions of Lemma 1, and for any r � r0: (i) if Assumption V' holds, then Q�
r;T

w
!p tr(Qr;1), where

Qr;1 is as de�ned in (3.3), with this result holding regardless of whether the i.i.d. or wild bootstrap

re-sampling design is used in step (iii) of Algorithm 1; and (ii) if Assumption V" holds, then provided

the wild bootstrap is employed in step (iii) of Algorithm 1, Q�
r;T

w
!p tr(QH

r0;1) where QH
r0;1 is as de�ned

below (3.4).

Remark 6 An immediate consequence of Proposition 2 is that under either Assumption V' or

Assumption V", the wild bootstrap test based on Q�
r;T will be asymptotically correctly sized under

the null hypothesis (r = r0), and will be consistent for all r < r0. This follows from the results

noted in section 3 that Qr0;T
w
! tr(Qr0;1) under Assumptions 1 and V' while Qr0;T

w
! tr(QH

r0;1) under

Assumptions 1 and V", and thatQr;T diverges at rate T rate when r < r0. In view of this, when the wild

bootstrap is employed in step (iii) of Algorithm 1, then p�r0;T
w
! U [0; 1] and p�r;T := 1�G�

r;T (Qr;T )
p
! 0,

for all r < r0. This result therefore holds for the wild bootstrap under Assumptions V, V' and V".

The same result holds for the i.i.d. bootstrap under Assumptions V and V', but not under V".

We conclude this section by stating the following corollary of Proposition 2 which shows that the

bootstrap sequential procedure in Algorithm 2 is consistent. The stated result holds for both the i.i.d.

and wild bootstrap-based implementations of Algorithm 2 under Assumption V', but only holds for

the wild bootstrap variant under Assumption V".

Corollary 1 Let r̂ denote the estimator of the co-integration rank as obtained in Algorithm 2. Then,

under the conditions of Proposition 1: limT!1 P (r̂ = r) = 0 for all r = 0; 1; :::; r0�1; limT!1 P (r̂ = r0)

= 1� � � I(r0 < p), and lim
T!1

sup
r2fr0+1;:::;pg

P (r̂ = r) � �.

6 Numerical Results

Using Monte Carlo simulation we now turn to an investigation of the �nite sample performance of

the bootstrap procedures based on restricted estimates of the short-run parameters, as detailed in

Algorithms 1 and 2 of Section 4. Results are reported for both the i.i.d. and wild bootstrap versions

of the re-sampling scheme in step (iii) of the algorithms. These algorithms are also compared with

the corresponding asymptotic procedures of Johansen (1996), and with bootstrap algorithms based
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on unrestricted estimates of the short-run parameters; see Swensen (2006) for the i.i.d. re-sampling

scheme, and Cavaliere et al. (2010a, 2010b) for the wild bootstrap re-sampling scheme.

As our simulation DGP we consider the following VAR(2) process of dimension p = 4,

�Xt = ��0Xt�1 + �1�Xt�1 + "t; t = 1; :::; T (6.1)

with "t a martingale di�erence sequence (see below), X0 = �X0 = 0, and T 2 f50; 100; 200g. The

long-run parameter vectors are set to � = (1; 0; 0; 0)0 and � = (a; 0; 0; 0)0 (the case of no co-integration

obtains for a = 0). Regarding the innovation term, and following van der Weide (2002), and assume

that "t may be written as the linear map "t = �et, where � is an invertible p � p matrix which is

constant over time, while the p components of et := (e1t; :::; ept)
0 are independent across i = 1; :::; p.

In the case where the individual components follow a standard GARCH(1; 1) process (as is the case

with Model C below), the process is known as GO-GARCH(1; 1). Notice that, by de�nition, the PLR

statistic does not depend on the matrix �, as the eigenvalue problem in (3.1) has the same eigenvalues

upon re-scaling (as can be seen by simply pre- and post-multiplying by ��1 in (3.1)). This allows us

to set � = Ip in the simulations, with no loss of generality.

In the context of (6.1) we consider for the individual components of et the univariate innovation

processes and parameter con�gurations used in Section 4 of Gon�calves and Kilian (2004) and in section

5 of Cavaliere et al. (2010b), to which the reader is referred for further discussion. These are as follows:

� Case A. eit, i = 1; :::; p, is an independent sequence of N (0; 1) variates

� Case B. eit, i = 1; :::; p, is an independent sequence of Student t (�) (normalised to unit variance)

variates. Results are reported for � = 5.

� Case C. eit is a standard GARCH(1; 1) process driven by standard normal innovations of the

form eit = h
1=2
it vit, i = 1; :::; p, where vit is i.i.d. N(0; 1), independent across i, and hit =

! + d0e
2
it�1 + d1hit�1, t = 0; :::; T . Results are reported for d0 = 0:05 and d1 = 0:94.

� Case D. eit is the �rst-order AR stochastic volatility [SV] model: eit = vit exp (hit); hit =

�hit�1 + 0:5�it, with (�it; vit)
0 � i.i.d. N(0; diag(�2� ; 1)), independent across i = 1; :::; p. Results

are reported for � = 0:951, �� = 0:314.

� Case E. eit is a nonstationary, heteroskedastic independent sequence ofN
�
0; �2it

�
variates, where

�2it = 1 for t � bT�c and �2it = � for t > bT�c, all i = 1; :::; p. Results are reported for � = 2=3

and � = 3 (late positive variance shift).

Notice that cases A and B satisfy Assumption V (i.i.d. shocks). Under case C, for the chosen

parameter con�guration, "t is globally stationary with �nite 4th order moments and, hence, satis�es

Assumption V'. Similarly, the SV model of Case D is strictly stationary with bounded 4th order

moments, see Carrasco and Chen (1992) and, hence, satis�es Assumption V'. Finally, Case E implies

a single, permanent shift in the innovation variance; the resulting error sequence is therefore globally

heteroskedastic and satis�es Assumption V".
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The reported simulations were programmed using the rndKMn pseudo-Gaussian random number

generator function of Gauss 9.0. All experiments were conducted using 10; 000 replications. For the

bootstrap tests, any replications violating the root check conditions (step (ii) in Algorithms 1 and 2

and step (iii) in Algorithms 1 and 2 of Swensen, 2006) were discarded and the experiment continued

until 10,000 valid replications were obtained. For each bootstrap procedure we report the frequency

with which such violations occurred.4 The number of replications used in both the i.i.d. and the

wild bootstrap algorithms was set to 399. All tests were conducted at the nominal 0:05 signi�cance

level. The VAR model was �tted with a restricted constant when calculating all of the tests. For

the standard PLR tests the asymptotic critical values used were taken from Table 15.2 of Johansen

(1996).

We �rst in section 6.1 consider the case of no co-integration, setting a = 0:0, and then turn in

section 6.2 to the case of a single co-integration vector, setting a = �0:4.

6.1 The no co-integration case (r0 = 0)

In the non-co-integrated case, (6.1) reduces to the VAR(1) in �rst di�erences, �Xt = ��Xt�1+"t; t =

1; :::; T . As in Johansen (2002, section 3.1), we set �1 := 
I4, so that the I(1; r) conditions are met

with r = 0, provided j
j < 1. Results are reported for 
 2 f0:0; 0:5; 0:8; 0:9g.

We �rst consider the size of the asymptotic PLR test and the various bootstrap analogue tests for

r = 0. The bootstrap tests from section 5 of this paper are denoted by Q0;T (asymptotic test), Q�iid
0;T

(Algorithm 1, i.i.d. re-sampling), Q�w
0;T (Algorithm 1, wild re-sampling), while the bootstrap tests based

on unrestricted estimation of the short-run parameters, as originally proposed by Swensen (2006) and

Cavaliere et al. (2010a,b) are denoted by ~Q�,iid
0;T and ~Q�,w

0;T , respectively. Empirical rejection frequencies

[ERFs] of these tests for r = 0 for case A (i.i.d. Gaussian shocks) and case B (i.i.d. t (5) shocks), are

reported in Tables 1.1 and 2.1 respectively.

[ TABLES 1.1, 1.2, 2.1, 2.2 ABOUT HERE ]

It is seen from the results in Tables 1.1 and 2.1 that the standard asymptotic test for r = 0,

Q0;T , displays very poor �nite sample size control. Even in the simplest case where 
 = 0 and the

shocks are Gaussian, the ERF is around 19% for T = 50, improving somewhat to around 8% for

T = 200. However, as 
 increases, size control deteriorates markedly; for instance, when 
 = 0:9 the

size of the asymptotic test exceeds 93% when T = 50, and is still as high as 45% for T = 200. In

contrast, the ERFs of the bootstrap tests, Q�,iid
0;T and Q�,w

0;T , all lie very close to the nominal 5% level.

The test based on wild bootstrap re-sampling, Q�,w
0;T , appears to be slightly more conservative than

its i.i.d. analog, Q�,iid
0;T : for Gaussian shocks and 
 = 0, Q�,iid

0;T has size ranging from 4.6% (T = 50)

to 4.9% (T = 200), while the wild bootstrap test Q�,w
0;T has size ranging from 3.2% (T = 50) to

4.4% (T = 200) in this setting. Interestingly, when 
 = 0:9, Q�,w
0;T controls size extremely well, both

4The Gauss procedure for computing the bootstrap algorithms is available from the authors upon request.

13



under Gaussian and t(5) errors; for example, in the Gaussian case, when T = 50, Q�,w
0;T has size 7.1%

while Q�,iid
0;T has size around 11%. In line with the results in CRT, and for the simulation DGPs

considered here, the bootstrap PLR tests based on Algorithm 1 are seen to be clearly preferable to

the corresponding bootstrap PLR tests based on unrestricted estimates of the short run parameters.

In the �nal example above the i.i.d. bootstrap test of Swensen (2006), ~Q�,iid
0;T , has an ERF of around

30%, while the corresponding ERF for the wild bootstrap analogue of Cavaliere et al. (2010a, 2010b),

~Q�,w
0;T , is about 25%. This illustrates the substantial improvements in size control that can be obtained

by estimating all the parameters restrictedly, i.e. by imposing the null rank being tested.

The associated results for the sequential procedures are reported in Table 1.2 (Gaussian shocks)

and Table 2.2 (t(5) shocks). Since all of the tests were run at the (asymptotic) 5% signi�cance level

and the DGP satis�es Assumption V, both the standard asymptotic sequential procedure and all of the

bootstrap sequential procedures should (in the limit) select r = 0 with probability 95% and r > 0 with

probability 5%. As with the results in Tables 1.1 and 2.1, among the various algorithms considered,

Algorithm 2 of CRT again appears to deliver the best performance in terms of its ability to select the

true co-integration rank, r0 = 0. Of the two re-sampling options within step (iii) of this algorithm,

the procedure based on i.i.d. re-sampling appears to be slightly more liberal than its wild bootstrap

analogue, which is extremely accurate, even for large values of 
.

Finally, comparing the results in Tables 1.1 and 2.1 and the results in Tables 1.2 and 2.2, it is seen

that, for a given PLR test and associated sequential procedure, the results appear little a�ected by

whether the shocks are Gaussian or t (5) distributed.

[ TABLES 3.1, 3.2, 4.1, 4.2 ABOUT HERE ]

We now consider the corresponding results for the two (stationary) conditionally heteroskastic

processes speci�ed in cases C (independent stationary GARCH(1,1) processes) and D (stationary

autoregressive stochastic volatility processes) above. Results for the tests of r = 0 are reported in

Tables 3.1 (case C) and 4.1 (case D). In both cases, the standard asymptotic test is seen to be massively

oversized: for example, when the shocks follow a SV process, even for T = 200 the size of Q0;T ranges

between 26.9% (
 = 0) and 55.7% (
 = 0:9). Of the two stationary conditionally heteroskedastic shock

processes considered, it is the autoregressive stochastic volatility case, Case D, which has the strongest

impact on the size of the asymptotic PLR test, this because the chosen parameter con�guration implies

relatively strong serial dependence in the conditional variance of the innovations.

In the GARCH(1,1) case, the bootstrap i.i.d. test from Algorithm 1, Q�,iid
0;T , displays very accurate

size controls: the ERFs associated with this test are little di�erent from those observed in cases A and

B (i.i.d. shocks). Overall, the wild bootstrap test of Algorithm 1, Q�,w
0;T , although slightly undersized

under for small values of 
, does an excellent job, in particular for the larger values of 
 considered.

It is, however, where the innovation process follows a SV process (case D) that the bene�ts of the

wild bootstrap tests over the other tests become clear. Under case D, the size properties of the i.i.d.

bootstrap test, Q�,iid
0;T , although representing an improvement over the asymptotic test, are still largely
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unsatisfactory; for T = 200, the ERFs are all still above 17%. Conversely, the ERFs of its wild

bootstrap analogue, Q�,w
0;T , are all very close to the nominal 5% level, even for small T and large 
.

As was seen for the i.i.d. cases A and B, the bootstrap LR tests Q�;iid
0;T and Q�;w

0;T have much better

size than the corresponding bootstrap tests of Swensen (2006), ~Q�,iid
0;T , and Cavaliere et al. (2010a,

2010b), ~Q�,w
0;T . This is particularly in evidence for the larger values of 
 considered. For example, in

the case of GARCH shocks (SV shocks), T = 50 and 
 = 0:9, the wild bootstrap test ~Q�,w
0;T has size

of 26:5% (28:9%), while the test based on the wild bootstrap version of Algorithm 1, Q�,w
0;T , has size of

6:7% (7:6%).

Turning to the associated results for the sequential procedures, see Table 3.2 (case C) and Table

4.2 (case D), it is again the version of Algorithm 2 which employs the wild bootstrap re-sampling

scheme in step (iii) that has the best available performance for the simulation DGPs considered here

in terms of its probability of selecting the true rank r0 = 0. The version of Algorithm based on the i.i.d.

re-sampling in step (iii), while performing well under GARCH errors, is misleading in the presence of

SV: for example, when T = 200 it detects one (or more) co-integration relation at least 16% of the

time. Conversely, the wild bootstrap version of Algorithm 2 turns out to perform particularly well for

all values of 
 considered.

[ TABLES 5.1, 5.2 ABOUT HERE ]

We now turn to the case of non-stationary heteroskedasticity by reporting, in Tables 5.1 and 5.2,

the results for the case of a one-time change in volatility occurring in each of the p errors eit (Case

E). This process satis�es Assumption V" with � (�) a non-constant step function and, hence, both the

asymptotic PLR tests and the bootstrap PLR tests based on i.i.d. re-sampling would be expected to

be unreliable; see Cavaliere et al. (2010b). Conversely, we expect from Proposition 2 above that the

bootstrap tests based on wild re-sampling will be approximately correctly sized.

The ERFs reported in Tables 5.1 are indeed in line with our theoretical results. Speci�cally, under

a one-time change in volatility the asymptotic test, Q0;T , is extremely unreliable in terms of size. The

bootstrap PLR test from Algorithm 1 based on i.i.d. re-sampling, Q�iid
0;T , is also unreliable, with size

ranging from 25.6% (when 
 = 0:9) to 34% (when 
 = 0) for T = 200. Conversely, the size properties

of the wild bootstrap PLR test from Algorithm 1, Q�w
0;T , seem largely satisfactory. A signi�cant degree

of �nite sample oversize can, however, occur when T = 50, although these distortions substantially

reduce as the sample size increases; for example, when 
 = 0:9 (
 = 0), Q�w
0;T has size of 12.3%

(10.1%), reducing to 6.7% (7.1%) for T = 200. It is also worth noting that Q�w
0;T performs considerably

better than the corresponding wild bootstrap test (based on unrestricted estimation of the short run

parameters) proposed in Cavaliere et al. (2010a, 2010b), ~Q�w
0;T . For example, for T = 50 the size of

~Q�w
0;T is about 28.3% (17.9%) when 
 = 0:9 (
 = 0), while for T = 200, the size of ~Q�w

0;T is about 11.1%

(8.7%) when 
 = 0:9 (
 = 0).

The superiority of the bootstrap procedures based on restricted estimation are further con�rmed

by the sequential results reported in Table 5.2. Consistent with the results in Table 5.1, the procedure
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based on the bootstrap Q�w
r;T tests gets considerably closer to selecting the true rank with frequency

95%. Conversely, both the standard procedure based on Qr;T and the bootstrap procedure based

on i.i.d. re-sampling of the residuals, perform very poorly. It is also worth noting that, for all the

sample sizes considered and for all values of 
 considered, the wild bootstrap version of Algorithm 2

again performs substantially better than the sequential procedure outlined in Cavaliere et al. (2010a,

2010b), with the latter tending to detect co-integration too frequently in �nite samples.

We conclude this subsection by examining the percentage of times the bootstrap algorithms fail

to generate I(1) samples, hence violating the root check conditions (either step (ii) in Algorithm 1 or

step (iii) in Algorithm 1 of Swensen, 2006, as appropriate).5 It can be observed that such percentages

are quite low across all models considered. Some violations occur when volatility is persistent (cases D

and E) and T = 50, but other things being equal the frequency of such failures decreases rapidly as the

sample size becomes bigger. Overall, CRT's Algorithm 1 generates fewer explosive samples than the

corresponding algorithms in Swensen (2006) and Cavaliere et al. (2010a, 2010b). The only exception is

Case E with T small and 
 large. As far as the sequential algorithms are considered, CRT's Algorithm

2 never generates more failures of the root check condition than the corresponding algorithms from

Swensen (2006) and Cavaliere et al. (2010a, 2010b) and, hence, we believe it is preferable to these

procedures not only in terms of its ability to detect the true co-integration rank, but also in terms of

how frequently it generates I(1) bootstrap samples.

6.2 The co-integrated case (r0 = 1)

We now consider the VAR(2) in (6.1) with the long-run parameter vectors set to � = (1; 0; 0; 0)0,

� = (a; 0; 0; 0)0 and with a = �0:4. As in CRT, the lagged di�erences matrix �1 is speci�ed as

�1 :=

2666664

 � 0 0

� 
 0 0

0 0 
 0

0 0 0 


3777775
with 
 = 0:8 and � 2 f0; 0:1; 0:2; 0:3g. For all of these parameter combinations, Xt is I(1) with co-

integrating rank r0 = 1. As in CRT, the role of the parameter � is to isolate the violation or otherwise

of the auxiliary conditions given in Assumption 2 of Swensen (2009); in particular, these conditions are

satis�ed only for � = 0 or � = 0:1. As described in CRT, footnote 4, the bootstrap tests for r = 0 in

Swensen (2006) and Cavaliere et al. (2010a, 2010b) are able to generate I(1,0) bootstrap samples only

for j�j < 0:2. For � > 0, these bootstrap algorithms generate explosive processes with non-negligible

probability, even as T get large.

5Since steps (i) and (ii) of Algorithm 1 do not depend on the method used to re-sample the residuals (i.i.d. or wild

bootstrap re-sampling), the number of root check violations associated with Q�iid

0;T and Q�w

0;T will be identical and are

therefore reported only once. The same equivalence applies to the tests ~Q�iid

0;T and ~Q�w

0;T of Swensen (2006) and Cavaliere

et al. (2010a, 2010b). This feature does not hold for the sequential procedures, however, since algorithms that tend to

select higher values of the co-integration rank will necessarily perform a larger number of root checks.
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[ TABLES 6.1, 6.2, 7.1, 7.2 ABOUT HERE ]

For i.i.d. shocks, the ERFs of the tests for r = 1 are reported in Tables 6.1 (Gaussian shocks) and

7.1 (t (5) shocks). It is seen from these results that the standard asymptotic test for r = 1, Q1;T ,

again displays very poor �nite sample size control. For instance, for both Gaussian and t (5) shocks,

the ERFs are around 46% for T = 50 and still around 13% for T = 200. In contrast, the ERFs of

the bootstrap tests, Q�iid
1;T and Q�w

1;T , from Algorithm 1 all lie very close to the nominal 5% level, even

for T = 50 (with Q�w
1;T again being marginally conservative). In line with what was observed for the

r0 = 0 case in section 6.1, Q�,iid
1;T and Q�,w

1;T are better sized than the corresponding bootstrap tests of

Swensen (2006), ~Q�,iid
1;T , and Cavaliere et al. (2010a, 2010b), ~Q�,w

1;T , both of which are too liberal, with

size of around 10% in many cases.

The bootstrap tests obtained from Algorithm 1 also have good properties in terms of empirical

power. The ERFs of the i.i.d. variant for r = 0, Q�iid
0;T , are in most cases not lower than those of

Swensen's bootstrap ~Q�iid
0;T test. The only exceptions occur for � = 0; 0:1 when T = 50 where the

empirical power of Q�iid
0;T is slightly inferior to that of ~Q�iid

0;T . However, this is largely an artefact of the

severe over-sizing of ~Q�iid
0;T under the null hypothesis r = 0 ( ~Q�iid

0;T has size over 19% when � = 0 and

r = 0 for T = 50; cf. Tables 1.1 and 2.1 for 
 = 0:8). Turning to the wild bootstrap version of the test,

the ERFs of the Q�w
0;T test for r = 0, although only slightly lower than the ERFs of the Q�iid

0;T test, are

always higher than that of the wild bootstrap ~Q�w
0;T test of Cavaliere et al. (2010a, 2010b). Similarly,

while it might appear on a �rst reading of the results in Tables 6.1 and 7.1 that the asymptotic Q0;T

always displays higher power than the corresponding bootstrap tests, this is again an artefact of its

poor size control. To illustrate, for T = 50, rank 1 and i.i.d. Gaussian shocks (Table 6.1, entry � = 0),

the ERF of, for example, the wild bootstrap Q�w
0;T test is 50.8%, while the ERF of the asymptotic

Q0;T test is 97.6%. However, if we look at the corresponding size results (cf. Table 1.1 for 
 = 0:8)

it can be clearly seen that under the null hypothesis of rank zero, while the Q�w
0;T test has an ERF of

around 5.5%, very close to the nominal level, the Q0;T test has an ERF of 80.2%, grossly in excess of

the nominal level.

Tables 6.2 and 7.2 report the associated results for the sequential procedures. Overall, among the

various procedures considered, Algorithm 2 based on i.i.d. re-sampling appears to deliver the best

performance in terms of its ability to select the true co-integration rank, r0 = 1, followed by its wild

bootstrap version. As expected, Algorithm 2 is not a�ected by the value of �, whereas in contrast it

is clearly seen that the behaviour of the sequential algorithms of Swensen (2006) and Cavaliere et al.

(2010a, 2010b) are strongly a�ected by the value of �.

As with the results in section 6.1, it is seen that, for a given PLR test and associated sequential

procedure, the �nite sample behaviour appears little a�ected by whether the shocks are Gaussian or

t (5) distributed.

[ TABLES 8.1, 8.2, 9.1, 9.2 ABOUT HERE ]
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We now turn to cases C (independent stationary GARCH(1,1) processes) and D (stationary

stochastic volatility processes). As was also observed in section 6.1 for the non-co-integrated DGP, the

standard asymptotic PLR test is massively oversized, in particular under SV where even for T = 200,

the size of Q1;T is about 25%. While the corresponding i.i.d. bootstrap test from Algorithm 1, Q�,iid
1;T ,

delivers very accurate size control in the GARCH(1,1) case, under case D the size properties of this

test deteriorate, although they are still signi�cantly better than those associated to the asymptotic

test. Conversely, the ERFs of the wild bootstrap Q�,w
1;T test (which is only marginally undersized under

GARCH shocks), are all very close to the nominal 5% level, even for the smaller values of T and for all

the values of � considered. As in the two i.i.d. shock cases, the Q�,iid
1;T and Q�,w

1;T bootstrap tests from

Algorithm 1 display superior size control than the corresponding bootstrap tests of Swensen (2006),

~Q�,iid
1;T , and Cavaliere et al. (2010a, 2010b), ~Q�,w

1;T , which are again far too liberal.

In terms of empirical power, it can be seen that the Q�,iid
0;T and Q�,w

0;T tests from Algorithm 1 perform

well with respect to their ~Q�iid
0;T and ~Q�w

0;T counterparts. There are only a few cases where the latter

display higher rejection rates and these occurrences can be explained by the degree of over-sizing

present in the latter.

Turning to the sequential procedures, see Table 8.2 (case C) and Table 9.2 (case D), it can be clearly

seen that Algorithm 2 delivers the best results overall. As in the r0 = 0 case, the implementation of

Algorithm 2 which employs i.i.d. re-sampling, while performing best in the presence of GARCH errors

and T = 50, appears to be dominated by Algorithm 2 with wild bootstrap re-sampling when T = 100

and T = 200. In addition, although asymptotically valid, in �nite samples i.i.d. re-sampling tends to

selection too many co-integrating relations; for example, in the SV case even when T = 200, it selects

r = 1 only around 85% of the time, while its wild bootstrap analogue selects r = 1 at least 93% of the

time. For all of the parameter con�gurations considered, the two versions of Algorithm 2 (i.i.d. and

wild) of dominate their counterparts in Swensen (2006) and Cavaliere et al. (2010a, 2010b), even for

� = 0 and � = 0:1.

We now compare, for cases A{D, the frequency with which the bootstrap recursions fail to generate

valid I(1) bootstrap samples. Taking the sequential procedures under i.i.d. shocks (cases A{B) to

illustrate, the percentage of times Algorithm 2 generates explosive bootstrap samples is remarkably

small; in particular, it never exceeds 0:3%, 0:2% and 0:1% for T = 50, 100 and 200, respectively. In

contrast, Algorithm 2 of Swensen (2006) and the corresponding sequential wild bootstrap algorithm

of Cavaliere et al. (2010a, 2010b) display a much higher number of failures of the I(1; r) conditions,

even when they are asymptotically valid (� = 0:0 or � = 0:1). For instance, when T = 50 (T = 100)

and � = 0:1, explosive bootstrap samples are generated more than 8% (2%) of the time. For I(1)

DGPs with � � 0:2, this failure rate increases substantially; e.g. when � = 0:3 explosive samples are

generated about 50% (92%) of the time for T = 50 (T = 200).

[ TABLES 10.1, 10.2 ABOUT HERE ]
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We conclude this section by looking at the case of non-stationary heteroskedasticity. Tables 10.1

and 10.2 report the results for a common, one-time change in volatility (case E) under rank r0 = 1. As

noted in Section 6.1, under Assumption V" with � (�) non-constant, both the asymptotic tests and the

bootstrap tests based on i.i.d. re-sampling do not preserve their usual consistency properties while,

according to Proposition 2, the bootstrap test from Algorithm 1 with wild re-sampling in step (iii) is

expected to be approximately correctly sized.

The results in Table 10.1 clearly show that under a one-time change in volatility both the asymp-

totic test, Q1;T , and bootstrap tests based on i.i.d. re-sampling (both the Q�iid
1;T test and Swensen's

i.i.d. ~Q�iid
1;T test) display highly unreliable size properties; for example, when T = 200, Q�

1;T has size

around 34%, Q�iid
1;T about 18:5% and ~Q�iid

1;T at least 20%. In contrast, our Q�w
0;T wild bootstrap test,

is largely satisfactory; its empirical size is only slightly above 5% for all values of �. Moreover, Q�w
0;T

outperforms the wild bootstrap test of Cavaliere et al. (2010a, 2010b), ~Q�w
0;T .

Again, these �ndings are further supported by the results for the corresponding sequential pro-

cedures reported in Table 10.2. The sequential procedure based on Q�w
r;T selects the true rank with

frequency very close to 95% throughout. Conversely, both the standard procedure based on Qr;T

and the bootstrap procedure based on i.i.d. re-sampling of the residuals, tend to over-estimate the

co-integration rank. Moreover, the wild bootstrap version of Algorithm 2 again outperforms the se-

quential procedure of Cavaliere et al. (2010a, 2010b), even in cases where the latter is asymptotically

valid (� = 0 and � = 1).

We conclude by examining the frequencies with which the various bootstrap sequential algorithms

violate the root check conditions. As far as Algorithms 1 and 2 are concerned, it can be seen that

although some violations do occur for the smallest sample size considered, T = 50, the frequency

of such failures drops to below 1% for T = 200. Conversely, the algorithms in Swensen (2006) and

Cavaliere et al. (2010a, 2010b) display a substantial number of failures, even in cases where they

are asymptotically valid. Overall, as in the r0 = 0 case, at least for the simulation DGPs considered

here, Algorithm 2 based on wild bootstrap re-sampling not only has the best performance in terms

of selecting the correct co-integration rank, but also outperforms the other algorithms in terms of its

ability to generate I(1) bootstrap samples.

7 Conclusions

In this paper we have discussed the bootstrap implementations of the pseudo likelihood ratio co-

integration rank test and associated sequential procedure of Johansen (1996) that have recently been

proposed in Cavaliere et al. (2012). Unlike the bootstrap procedures of Swensen (2006) and Cavaliere

et al. (2010a, 2010b), these are based only on restricted estimates of the underlying VAR model; the

other bootstrap procedures mentioned use a mixture of restricted and unrestricted estimates. For

the case of an i.i.d. re-sampling scheme, Cavaliere et al. (2012) demonstrate that their proposed

bootstrap procedure is both asymptotically correctly sized and consistent when the VAR is driven

by i.i.d. innovations, without the need for the conditions laid out in Swensen (2009) to hold on the
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underlying VAR. In contrast the bootstrap procedures of Swensen (2006) and Cavaliere et al. (2010a,

2010b) require these conditions to hold. We have extended the work of Cavaliere et al. (2012)

by analysing how their bootstrap procedures behave when the innovations are heteroskedastic, also

proposing a wild bootstrap based implementation of their approach. Precisely, we have shown that,

when the wild bootstrap implementation is used, this approach is asymptotically correctly sized and

consistent under either conditional or unconditional heteroskedasticity, again without the requirement

that the conditions of Swensen (2009) hold. When the i.i.d. bootstrap is used, this outcome no longer

holds in the case of unconditional heteroskedasticity but does continue to hold under conditional

heteroskedasticity.

A small Monte Carlo experiment suggested that, at least on the basis of the set of simulation

DGPs considered, the procedure based on the wild bootstrap works very well in �nite samples for a

variety of models of heteroskedasticity (both conditional and unconditional), outperforming (at least

for the simulation DGPs considered) not only asymptotic-based procedures, but also the corresponding

bootstrap procedures from Swensen (2006) and Cavaliere et al. (2010a, 2010b). Further numerical

investigation of the relative performance of the procedures discussed in this paper for a wider set of

simulation DGPs would constitute a useful topic for future research.

References

Andrews, D.W.K. and M. Buchinsky (2000): A three-step method for choosing the number of boot-

strap repetitions, Econometrica 68, 23-51.

Carrasco, M. and X.Chen (2002): Mixing and moment properties of various GARCH and stochastic

volatility models, Econometric Theory 18, 17-39.

Cavaliere, G., A. Rahbek and A.M.R. Taylor (2010a): Co-integration rank testing under conditional

heteroskedasticity, Econometric Theory 26, 1719{1760.

Cavaliere, G., A. Rahbek and A.M.R. Taylor (2010b): Testing for co-integration in vector autore-

gressions with non-stationary volatility, Journal of Econometrics 158, 7{24.

Cavaliere, G., A. Rahbek and A.M.R. Taylor (2012): Bootstrap determination of the co-integration

rank in VAR models, Econometrica 80, 1721-1740

Davidson J. (1994): Stochastic limit theory, Oxford: Oxford University Press.

Davidson, R. and J. MacKinnon (2000): Bootstrap tests: how many bootstraps? Econometric

Reviews 19, 55-68.

Gin�e, E. and J. Zinn (1990), Bootstrapping general empirical measures, Annals of Probability 18,

851{869.

20



Gon�calves, S. and L. Kilian (2004): Bootstrapping autoregressions with conditional heteroskedasticity

of unknown form, Journal of Econometrics 123, 89-120.

Hansen, B.E. (1996): Inference when a nuisance parameter is not identi�ed under the null hypothesis,

Econometrica 64, 413{430.

Johansen, S. (1996): Likelihood-Based Inference in Cointegrated Vector Autoregressive Models, Ox-

ford: Oxford University Press.

Johansen, S. (2002): A small sample correction of the test for cointegrating rank in the vector

autoregressive model, Econometrica 70, 1929{1961.

Swensen, A.R. (2006): Bootstrap algorithms for testing and determining the cointegration rank in

VAR models, Econometrica 74, 1699{1714.

Swensen, A.R. (2009): Corrigendum to \Bootstrap algorithms for testing and determining the coin-

tegration rank in VAR models", Econometrica 77, 1703{1704.

van der Weide, R. (2002): GO-GARCH: a multivariate generalized orthogonal GARCH model, Jour-

nal of Applied Econometrics 17, 549-564.

Appendix

A.1 Preliminary Lemma

For the proofs in Appendix A.2 covering the case where innovations satisfy Assumption V" a minor

generalization of the law of large numbers (LLN) in Lemma A.1 of Cavaliere et al. (2010b) is needed.

Speci�cally, Lemma A.1 of Cavaliere et al. (2010b) holds under Assumption V" but with the additional

assumption of symmetry, which we relax now relax.

As in Lemma A.1 of Cavaliere et al. (2010b) consider the p-dimensional heteroskedastic VAR

processes:

Yt = A1Yt�1 + : : :+AmYt�m + "t; (A.1)

Xt = B1Xt�1 + : : :+BnXt�n + "t;

with "t satisfying Assumption V", i.e. the "t are allowed to be asymmetrically distributed. The

characteristic polynomials are denoted as A (z) = 1�A1z� :::�Amz
m and B (z) = 1�B1z� :::�Bnz

n

respectively for the two autoregressions. The processes are well-de�ned for t = 1; ::; T with �xed initial

values (Y 0
0 ; Y

0
�1; :::; Y

0
�m+1)

0 and (X 0
0; X

0
�1; :::; X

0
�n+1)

0.

Lemma A.1" Consider the VAR heteroskedastic processes Yt and Xt de�ned in (A.1), where the

roots of det jA (z) j = 0 and det jB (z) j = 0 are all assumed to lie outside the unit circle. Then as

T !1, for k � 0,

1

T

TX
t=1

YtX
0
t+k

p
!

1X
i=0

�i��
0
i+k (A.2)
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where � :=
R 1
0 � (s) ds, and �i and �i are the coe�cients obtained by inversion of the characteristic

polynomials A (z) and B (z) respectively.

Proof. Rewrite (A.2) as

1

T

TX
t=1

YtX
0
t+k =

1

T

TX
t=1

E
�
YtX

0
t+k

�
+

1

T

TX
t=1

�
YtX

0
t+k � E

�
YtX

0
t+k

��
: (A.3)

First, the �rst term on the right hand side of (A.3) converges to
P1

i=0�i��
0
i+k, as shown in Cavaliere

et al. (2010b, proof of Lemma A.1). To show that the second term converges in probability to zero it

su�ces to establish that, as in the proof of Lemma A.1 of Cavaliere et al. (2010b):

VT :=
1

T

TX
t=1

�
UtU

0
t � E

�
UtU

0
t

�� p
! 0 ,

where Ut follows the multivariate vector autoregression, Ut = AUt�1 + "t; with � (A) < 1. Without

loss of generality we may set U0 = 0 in what follows. Recalling the notation �t = �t�
0
t; �rst rewrite

VT as,

VT =
1

T

TX
t=1

t�1X
i=0

Ai
�
"t�i"

0
t�i � �t�i

�
Ai0 +

1

T

TX
t=1

t�1X
i=0

t�1X
j=0
j 6=i

Ai"t�i"
0
t�j

�
Aj
�0
=: KT + JT :

Consider �rst KT . Here we have that

kKT k =






 1T
TX
t=1

t�1X
i=0

Ai
�
"t�i"

0
t�i � �t�i

�
Ai0






 =






T�1X
i=0

Ai

 
1

T

T�iX
t=1

�
"t�i"

0
t�i � �t�i

�!
Ai0







�

T�1X
i=0



Ai


2 




 1T

T�iX
t=1

�
"t�i"

0
t�i � �t�i

�





and, hence, KT

p
! 0. To see this use the result that

PT�1
i=0



Ai


2 � C < 1, which obtains by virtue

of the fact that � (A) < 1. Moreover we have,

E






 1T
T�iX
t=1

�
"t�i"

0
t�i � �t�i

�





2

�
1

T 2

TX
t=1

E


�"t�i"0t�i � �t�i

�

2 = O

�
1

T

�
since for all t, �t and �t are �nite (see Cavaliere et al., 2010b) and "t has �nite fourth moment.

Turning next to JT , set ~"t := 1 (t � 1) "t and rewrite JT as follows,

JT =
1

T

TX
t=1

t�1X
i=0

t�1X
j=0
j 6=i

Ai"t�i"
0
t�jA

j0 =
1

T

TX
t=1

T�1X
i=0

T�1X
j=0
j 6=i

Ai~"t�i~"
0
t�jA

j0

=
T�1X
i=0

T�1X
j=0
j 6=i

Ai

 
1

T

TX
t=1

~"t�i~"
0
t�j

!
Aj0:
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This implies that

E kJT k �
T�1X
i=0

T�1X
j=0
j 6=i



Ai




Aj



E 




 1T
TX
t=1

~"t�i~"
0
t�j






 :
As before,

PT�1
i=0

PT�1
j=0
j 6=i



Ai




Aj



 � C < 1 and so to show that JT
p
! 0 we need to �nd an o (1)

upper bound for E



T�1PT

t=1 ~"t�i~"
0
t�j




 which is independent of i; j. To that end, observe that

 
E






 1T
TX
t=1

~"t�i~"
0
t�j







!2

� E

0@




 1T
TX
t=1

~"t�i~"
0
t�j







2
1A = T�2

TX
s=1

TX
t=1

E
�
~"0t�i~"s�i~"

0
t�j~"s�j

�
:

Since "t (and hence ~"t) are independent, E
�
~"0t�i~"s�i~"

0
t�j~"s�j

�
6= 0 for t = s only, which implies 

E






 1T
TX
t=1

~"t�i~"
0
t�j







!2

�
1

T 2

TX
t=1

E
�
~"0t�i~"t�i~"

0
t�j~"t�j

�
=

1

T 2

TX
t=1

E


~"2t�i

E 

~"2t�j

 = O

�
1

T

�
,

as required. �

A.2 Proofs of Lemma 1, Propositions 1-2 and Corollary 1

Proof of Lemma 1. The results in Lemma 1 are proved under Assumption V (i.i.d. innovations) in

Lemma 1 of CRT. We therefore state here the modi�cations needed to the proof of Lemma 1 of CRT

to allow for the case where the innovations follow either Assumption V' or V". In order to do so we

will apply results from Cavaliere et al. (2010a) and Cavaliere et al. (2010b) for Assumptions V' and

V", respectively. The proof of Lemma 1 is given for case (i) of no deterministics; the generalisations

to the cases of (ii) a restricted constant and (iii) a restricted linear trend, mimic the arguments in the

proof of Lemma 1 of CRT and are therefore omitted in the interests of brevity. We establish in turn

that the stated results hold under Assumptions V' and V".

Assumption V':

We start by introducing a convenient normalisation of the co-integration parameters, which allows us

to prove part (i) of the Lemma; that is, convergence to the pseudo-true parameter vector �
(r)
0 . We

then prove part (ii) by establishing that �
(r)
0 does indeed satisfy the I(1; r) conditions for r � r0.

Normalisation. Denote by �0; �0; 	0 := (�1;0; :::;�k�1;0) and �0 the true parameters in (2.1). By

Lemmas A.1-A.3 of Cavaliere et al. (2010a), the results of Theorem 11.1 in Johansen (1996) apply.

Therefore, in particular, the r0 largest sample eigenvalues (�̂i)i=1;:::;r0 from (3.1) satisfy, as T ! 1,

the population eigenvalue problem,
������ � ��0�

�1
00 �0�

�� = 0. Here �ij := 
ij � 
i2

�1
22 
2j for

i; j = 0; � and 
ij :=plimT!1
1
T

P
ZitZ

0
jt for i; j = 0; 2; � with Z�t := �0Xt, Z0t := �Xt and

Z2t :=
�
�X 0

t�1; :::;�X
0
t�k+1

�0
. As in Lemma 1 of CRT, let � := (�1; :::; �r0) denote the eigenvectors

corresponding to the eigenvalues �1 > �2 > ::: > �r0 > 0, such that �0���� = Ir0 . We can then de�ne

�0 := �� and �0 := � (�0)�1. Observe that, ��0 = �0�
0
0, while also

��0�0 = Ir0 and ��00�
�1
00 �0�0 = diag (�1; :::; �r0) , (A.4)
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with ��0�0and ��00 de�ned as above. Indeed, the relations in (A.4) are the population equivalents of

the sample normalisations in (3.5).

Convergence to pseudo-true values. With �̂ = �̂
(r0)

the PMLE under the true rank r0, satis�es by the

results in Lemmas A.1-A.3 of Cavaliere et al. (2010a), ��
0
0(�̂ � �0)

p
! 0 and T 1=2�00?(�̂ � �0)

p
! 0.

Next, as in the proof of Lemma 1 of CRT, by Assumption 2, this implies directly that,

��
0
0(�̂

(r)
� �

(r)
0 )

p
! 0 and T 1=2�00?(�̂

(r)
� �

(r)
0 )

p
! 0 (A.5)

where �
(r)
0 := �0K

(r)
r0 ; with K

(r)
� de�ned after equation (3.5). Likewise,

�̂(r)
p
! �0�0K

(r)
r0 = �0K

(r)
r0 =: �

(r)
0 . (A.6)

Regarding 	̂(r), de�neMij :=
1
T

PT
t=1 ZitZ

0
jt, such that 	̂

(r) =
�
M02 � �̂(r)�̂

(r)0
M12

�
M�1

22 ; and hence,

	̂(r) p
!
�

02 � �0K

(r)
r0 K

(r)0
r0 
�02

�

�122 = 	0 + �0K

(r)
r0;?

K(r)0
r0;?


�02

�1
22 =: 	

(r)
0 (A.7)

with K
(r)
r0;? := (0; Ir0�r)

0. Finally, for �̂(r) it holds that

�̂(r) = S00 � �̂(r)�̂(r)0
p
! �

(r)
0 := �0 + �0K

(r)
r0;?

K(r)0
r0;?

�00 > 0: (A.8)

Pseudo true values satisfy the I(1,r) conditions, with r � r0. Rewrite the DGP as

�Xt = �
(r)
0 �

(r)0
0 Xt�1 +	

(r)
0 Z2t + "r;t, (A.9)

see (A.6){(A.7), with "r;t given by

"r;t = "t + �0K
(r)
r0;?

K
(r)0
r0;?

�
�00Xt�1 � 
�02


�1
22 Z2t

�
: (A.10)

Observe that under Assumption V', �
(r)0
0 Xt�1 and Z2t in (A.9) are uncorrelated with "r;t. Proceed

next as in the proof of Lemma 1 of CRT, by �rst writing the system in companion form and using

identical arguments to see that the I(1,r) conditions hold under V'.

Assumption V":

Under Assumption V", we can apply results from Cavaliere et al. (2010b) who repeatedly apply the

LLN for heteroskedastic vector autoregressions; see Cavaliere et al. (2010b), Lemma A.1. As noted in

Appendix A.1 we need the modi�ed version stated in Lemma A.1" to allow for asymmetric innovations.

Using Lemma A.1" allows us in particular to replace � in the foregoing proof under Assumption V',

by � :=
R 1
0 � (s)� (s)

0 ds. Moreover, note that whenever arguments here and in Cavaliere et al.(2010b)

refer to Lemma A.1, this should subsequently be replaced by a reference to Lemma A.1" above.

Normalisation and convergence to pseudo-true values. Lemmas A.2-A.3 of Cavaliere et al. (2010b)

imply that we get identical results to those given above in the proof under Assumption V' in terms

of �ij := 
ij � 
i2

�1
22 
2j for i; j = 0; � and 
ij , i; j = 0; 2; �, but where the limiting expressions
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for the 
ij are now as de�ned in the proof of Lemma A.2 of Cavaliere et al. (2010b) with �� = � :=R 1
0 � (s)� (s)

0 ds, and with a corresponding change in the de�nition of �
(r)
0 .

Pseudo true values satisfy the I(1,r) conditions, with r � r0. Rewrite the DGP as in (A.9) and

de�ne "r;t as in (A.10), then again we note that under Assumption V", �
(r)0
0 Xt�1 and Z2t in (A.9)

are uncorrelated with "r;t. Proceed as in the proof of Lemma 1 of CRT by writing the system in

companion form and using identical arguments to see that the I(1,r) conditions hold under V". �

Proof of Proposition 1: For the i.i.d. bootstrap, the results in (5.1) and (5.2) are established in

Proposition 1 of CRT under Assumption V (i.i.d. innovations). As in the proof of Lemma 1, we state

below the modi�cations needed for the extensions required to cover Assumptions V' and V", applying

results from Cavaliere et al. (2010a) and Cavaliere et al. (2010b), respectively, for both the i.i.d.

bootstrap and the wild bootstrap. Again we focus on the case (i) of no deterministics as the extension

to deterministics simply mimics the same arguments as in the proof of Proposition 1 of CRT.

Assumption V':

For r = r0 the results in (5.1) and (5.2) are established in Lemma A.4 of Cavaliere et al. (2010a). Next,

for r < r0, the results hold by the proof of Proposition 1 in CRT, re-de�ning X
�
t =

�
X�0

r;t; :::; X
�0
r;t�k+1

�0
;

�X2t = Z2t and �ij = 
ij for i; j = 0; 2; �; �0 in terms of the notation introduced above in the proof

of Lemma 1 under Assumption V'. Thus the algebraic arguments in CRT using the companion form

in terms of X�t , see equation (A.9) of CRT, directly yield the representation,

X�
r;t = Ĉ(r)

tP
i=1

"�r;t + Sr;tT
1=2; (A.11)

where Ĉ(r) is as de�ned in Proposition 1, "�r;t is as de�ned in Algorithm 1, and Sr;t is as de�ned

in the proof of Proposition 1 in CRT. That P �(maxt=1;:::;T kSr;tk > �) = op (1) holds by the argu-

ments given in the proof of Proposition 1 of CRT, using the consistency of the estimators established

here in Lemma 1 under Assumption V', provided that P �
�
T�1=2maxt=1;:::;T



"�r;t

 > �
�
= op (1).

For the i.i.d. bootstrap, this holds, as in CRT, by applying Chebychev's inequality, the fact that

E�
�
"�0r;t"

�
r;t

�2
= T�1

PT
t=1

�
"̂0r;t"̂r;t � �"0r�"r

�2
and that by Assumption V', "t has bounded fourth or-

der moment. For the wild bootstrap, the proof is identical except that, with �"r := T�1
PT

t=1 "̂r;t,

E�
�
"�0r;t"

�
r;t

�2
=
�
("̂r;t � �"r)

0 ("̂r;t � �"r)
�2

=
�
"̂0r;t"̂r;t � �"0r�"r

�2
.

Next, the result that T�1=2X�
r;bTuc

w
!p C

(r)
0 W (u), follows by the consistency in Lemma 1 under

Assumption V' together with the convergence result T�1=2
PbT �c

t=1 "
�
r;t

w
!p W (�), which, as in Cavaliere

et al. (2010a), for the wild bootstrap is implied by the pointwise convergence

1

T

bTucX
t=1

"̂r;t"̂
0
r;t =

1

T

bTucX
t=1

"r;t"r;t + op (1)
p
! u�

(r)
0 (A.12)

while, for the i.i.d. bootstrap, follows by noticing that the bootstrap FCLT in Swensen (2006) holds

under Assumption V' as well.
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Assumption V' ':

Similarly to what was established under Assumption V', for r = r0 the results in (5.1) and (5.3) are

established in Lemmas A.4 and A.5 of Cavaliere et al. (2010b). Likewise, for r < r0 the algebraic

arguments given in the proof of Proposition 1 of CRT directly yield the representation in (A.11)

under Assumption V". Also, that P � (maxt=1;:::;T kSr;tk > �) = op (1) holds by the arguments in CRT,

proof of Proposition 1, using the consistency of the estimators established here in Lemma 1 under

Assumption V", and using the result that P �
�
T�1=2maxt=1;:::;T



"�r;t

 > �
�
= op (1). The latter holds

as in the proof of Lemma A.4 in Cavaliere et al. (2010b), using the fact that under Assumption V" "t

has bounded fourth order moment.

Next, the result that T�1=2X�
r;bTuc

w
!p C

(r)
0 M (u), follows by the consistency in Lemma 1 under

Assumption V" together with the convergence result T�1=2
PbT �c

t=1 "
�
r;t

w
!p M (�), which again holds by

Cavaliere et al. (2010b), Lemma A.5. �

Proof of Proposition 2: Under Assumption V' and as in the proof of Theorem 3 of Cavaliere et al.

(2010a), this follows immediately by the results in Proposition 1 using standard arguments and de�ning

Bp�r :=
�
�
(r)0
0? �

(r)
0 �

(r)
0?

��1=2
�
(r)0
0?W . Likewise, under Assumption V", this holds by Proposition 1 and

the proof of Theorem 3 in Cavaliere et al. (2010b), de�ning ~Mp�r :=
�
�
(r)0
0? �

(r)
0 �0?

��1=2
�
(r)0
0?M . �

Proof of Corollary 1. Straightforward and therefore omitted in the interests of brevity. �
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TABLE 1.1: E	
���
�� R���
���� F������
��� �� A��	
����

��� B�������
 C�-����������� R�� T����. VAR(2) M����
&��' ��� r0 = 0, IID G������� ������

Q0,T Q̃∗iid
0,T Q̃∗w

0,T Q∗iid
0,T Q∗w

0,T

γ T ERF ERF ERF RC ERF ERF RC
0.0 50 19.1 4.6 4.2 0.0 4.6 3.2 0.0

100 10.4 4.7 4.7 0.0 4.7 4.1 0.0

200 7.9 5.0 4.8 0.0 4.9 4.4 0.0

0.5 50 39.1 7.5 6.8 0.0 5.4 3.8 0.0

100 19.0 6.0 6.0 0.0 5.3 4.6 0.0

200 11.0 4.9 5.0 0.0 5.0 4.7 0.0

0.8 50 80.2 19.4 16.9 0.4 8.1 5.5 0.0

100 47.1 11.7 10.8 0.0 6.5 5.2 0.0

200 23.1 7.1 6.7 0.0 5.6 5.0 0.0

0.9 50 93.3 30.2 25.0 1.9 11.0 7.1 1.6

100 75.9 22.1 20.3 0.2 8.4 6.9 0.0

200 44.8 11.9 11.3 0.0 6.3 5.9 0.0
Notes: ‘ERF’ denotes the empirical rejection rates; ‘RC’ denotes the percentage of

times the bootstrap algorithm generates explosive samples.

TABLE 1.2: S��������� P��
������ ��� D����	����� �'� C�-����������� R�� . VAR(2) M���� &��' ��� r0 = 0, IID G������� ������

ASYMPTOTIC Unrestricted, IID BS Unrestricted, Wild BS Restricted, IID BS [CRT] Restricted, Wild BS [CRT]
γ T r = 0 1 2 3, 4 r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 RC

0.0 50 80.9 16.4 2.3 0.4 95.4 4.1 0.5 0.0 0.0 95.8 3.9 0.3 0.0 0.0 95.5 4.2 0.3 0.0 0.0 96.8 2.9 0.3 0.0 0.0

100 89.6 9.1 1.1 0.2 95.3 4.3 0.4 0.0 0.0 95.3 4.2 0.5 0.0 0.0 95.3 4.3 0.4 0.0 0.0 95.9 3.5 0.5 0.1 0.0

200 92.1 7.2 0.6 0.1 95.1 4.6 0.3 0.1 0.0 95.2 4.4 0.3 0.0 0.0 95.1 4.5 0.3 0.1 0.0 95.6 4.0 0.4 0.1 0.0

0.5 50 60.9 29.2 7.7 2.1 92.5 6.6 0.8 0.2 0.1 93.2 6.0 0.8 0.1 0.1 94.6 4.8 0.5 0.1 0.0 96.2 3.2 0.4 0.2 0.1

100 81.0 16.0 2.4 0.6 94.0 5.2 0.7 0.1 0.0 94.0 5.4 0.5 0.1 0.0 94.7 4.7 0.6 0.1 0.0 95.4 4.0 0.5 0.2 0.0

200 89.0 9.9 1.0 0.2 95.1 4.5 0.4 0.1 0.0 95.0 4.6 0.3 0.0 0.0 95.0 4.5 0.4 0.1 0.0 95.3 4.2 0.4 0.1 0.0

0.8 50 19.8 38.2 25.5 16.5 80.6 16.2 2.6 0.5 2.5 83.2 13.8 2.7 0.4 2.1 91.9 7.2 0.7 0.2 0.3 94.5 4.5 0.6 0.4 0.2

100 52.9 34.0 9.6 3.4 88.4 9.9 1.4 0.4 0.2 89.2 9.3 1.2 0.3 0.2 93.5 5.8 0.6 0.1 0.1 94.8 4.4 0.6 0.2 0.1

200 76.9 19.4 3.1 0.6 92.9 6.4 0.6 0.1 0.0 93.3 6.0 0.6 0.1 0.0 94.4 5.1 0.5 0.1 0.0 95.0 4.5 0.4 0.2 0.0

0.9 50 6.7 23.6 30.3 39.4 69.8 23.7 5.4 1.1 9.2 75.0 19.0 4.7 1.2 8.4 89.0 9.6 1.2 0.2 2.1 92.9 5.8 0.8 0.5 2.2

100 24.1 38.0 23.3 14.7 77.9 18.2 3.2 0.6 1.7 79.7 17.0 2.7 0.7 1.7 91.6 7.4 0.9 0.1 0.2 93.1 5.8 0.7 0.4 0.2

200 55.2 32.2 9.7 3.0 88.1 10.5 1.3 0.2 0.3 88.7 9.8 1.3 0.2 0.2 93.7 5.8 0.5 0.1 0.1 94.1 5.2 0.5 0.2 0.1

Notes: ‘Restricted’ denotes Algorithm 2 of Section 3, ‘Unrestricted’ denotes Algorithm 2 of Swensen (2006) [IID bootstrap] and Cavaliere et al. (2010a,b) [Wild Bootstrap].

Entries denote the frequency with which each value of r is selected by the given algorithm.



TABLE 2.1: E	
���
�� R���
���� F������
��� �� A��	
����

��� B�������
 C�-����������� R�� T����. VAR(2) M����
&��' ��� r0 = 0, IID t(5) ������

Q0,T Q̃∗iid
0,T Q̃∗w

0,T Q∗iid
0,T Q∗w

0,T

γ T ERF ERF ERF RC ERF ERF RC
0.0 50 19.0 5.1 4.1 0.0 5.1 2.8 0.0

100 11.8 5.4 5.1 0.0 5.5 4.5 0.0

200 7.9 4.9 4.7 0.0 5.0 4.4 0.0

0.5 50 39.5 7.7 6.8 0.0 5.8 3.6 0.0

100 19.7 6.0 5.9 0.0 5.4 4.7 0.0

200 11.4 5.4 5.1 0.0 5.1 4.8 0.0

0.8 50 79.5 19.1 16.5 0.5 8.0 5.0 0.1

100 46.8 10.6 10.5 0.0 6.0 5.0 0.0

200 23.7 7.3 7.0 0.0 5.7 5.1 0.0

0.9 50 93.2 29.7 24.9 2.2 10.5 6.4 1.5

100 77.0 20.9 19.1 0.2 7.9 6.1 0.0

200 45.4 12.4 11.8 0.0 6.7 5.8 0.0
Notes: see Table 1.1

TABLE 2.2: S��������� P��
������ ��� D����	����� �'� C�-����������� R�� . VAR(2) M���� &��' ��� r0 = 0, IID t(5) ������

ASYMPTOTIC Unrestricted, IID BS Unrestricted, Wild BS Restricted, IID BS [CRT] Restricted, Wild BS [CRT]
γ T r = 0 1 2 3, 4 r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 RC

0.0 50 81.0 16.3 2.3 0.5 95.0 4.6 0.4 0.0 0.0 95.9 3.6 0.4 0.1 0.0 94.9 4.8 0.3 0.0 0.0 97.2 2.4 0.3 0.1 0.0
100 88.2 10.7 0.8 0.3 94.6 4.8 0.5 0.1 0.0 94.9 4.5 0.4 0.1 0.0 94.5 4.9 0.5 0.1 0.0 95.5 3.9 0.4 0.2 0.0
200 92.1 7.2 0.6 0.1 95.1 4.4 0.4 0.1 0.0 95.3 4.3 0.4 0.0 0.0 95.0 4.5 0.4 0.1 0.0 95.6 3.9 0.4 0.1 0.0

0.5 50 60.6 29.7 7.6 2.3 92.3 6.9 0.7 0.1 0.1 93.2 6.1 0.7 0.1 0.1 94.3 5.3 0.4 0.0 0.0 96.4 3.1 0.4 0.1 0.0
100 80.3 16.8 2.4 0.5 94.0 5.5 0.5 0.1 0.0 94.1 5.2 0.6 0.1 0.0 94.6 5.0 0.4 0.1 0.0 95.3 4.0 0.5 0.1 0.0
200 88.6 10.1 1.1 0.2 94.6 4.9 0.5 0.1 0.0 94.9 4.7 0.4 0.1 0.0 95.0 4.6 0.4 0.1 0.0 95.2 4.3 0.4 0.2 0.0

0.8 50 20.5 36.9 25.8 16.7 80.9 16.1 2.4 0.6 2.3 83.5 13.5 2.5 0.5 2.3 92.0 7.1 0.8 0.2 0.2 95.0 4.2 0.6 0.2 0.2
100 53.2 33.7 9.9 3.3 89.4 9.5 1.0 0.1 0.2 89.5 9.0 1.2 0.2 0.1 94.0 5.4 0.5 0.1 0.0 95.0 4.2 0.6 0.2 0.0
200 76.3 19.7 3.4 0.7 92.7 6.5 0.8 0.1 0.0 93.0 6.2 0.6 0.2 0.0 94.3 5.2 0.5 0.1 0.0 94.9 4.4 0.5 0.2 0.0

0.9 50 6.8 24.6 29.6 39.1 70.3 23.7 4.8 1.2 8.4 75.1 18.7 4.9 1.3 7.9 89.5 9.3 1.0 0.2 1.9 93.6 5.2 0.8 0.4 1.7
100 23.0 39.1 24.1 13.9 79.1 17.5 2.9 0.5 1.9 80.9 15.5 3.1 0.6 1.8 92.1 7.1 0.7 0.1 0.1 93.9 5.0 0.8 0.3 0.3
200 54.6 32.6 9.5 3.2 87.6 10.9 1.3 0.2 0.3 88.2 10.3 1.4 0.1 0.3 93.3 6.1 0.6 0.1 0.0 94.2 5.0 0.6 0.2 0.0

Notes: see Table 1.2



TABLE 3.1: E	
���
�� R���
���� F������
��� �� A��	
����

��� B�������
 C�-����������� R�� T����. VAR(2) M����
&��' ��� r0 = 0, GARCH ������

Q0,T Q̃∗iid
0,T Q̃∗w

0,T Q∗iid
0,T Q∗w

0,T

γ T ERF ERF ERF RC ERF ERF RC
0.0 50 18.9 5.0 4.3 0.0 5.2 3.3 0.0

100 11.1 5.9 5.1 0.0 5.8 4.4 0.0
200 8.7 6.0 4.7 0.0 5.8 4.6 0.0

0.5 50 39.7 7.7 7.0 0.0 5.7 4.0 0.0
100 19.9 7.1 6.3 0.0 6.2 4.7 0.0
200 11.6 6.0 5.1 0.0 5.7 4.6 0.0

0.8 50 80.0 19.5 17.1 0.4 8.2 5.2 0.1
100 47.5 12.0 10.9 0.0 7.2 5.3 0.0
200 24.7 8.1 7.0 0.0 6.2 5.0 0.0

0.9 50 93.4 30.8 26.5 2.0 10.7 6.7 1.6
100 76.4 22.7 19.9 0.2 8.8 6.7 0.1
200 47.1 12.6 11.4 0.0 7.3 5.9 0.0

Notes: see Table 1.1

TABLE 3.2: S��������� P��
������ ��� D����	����� �'� C�-����������� R�� . VAR(2) M���� &��' ��� r0 = 0, GARCH ������

ASYMPTOTIC Unrestricted, IID BS Unrestricted, Wild BS Restricted, IID BS [CRT] Restricted, Wild BS [CRT]
γ T r = 0 1 2 3, 4 r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 RC

0.0 50 81.1 15.8 2.5 0.7 95.0 4.3 0.6 0.1 0.1 95.7 3.6 0.6 0.1 0.1 94.8 4.5 0.6 0.1 0.0 96.7 2.8 0.4 0.1 0.1
100 89.0 9.5 1.3 0.3 94.1 5.4 0.4 0.1 0.0 94.9 4.7 0.4 0.1 0.0 94.2 5.3 0.4 0.1 0.0 95.6 3.7 0.5 0.2 0.0
200 91.3 7.7 0.8 0.2 94.0 5.4 0.6 0.1 0.0 95.3 4.2 0.4 0.1 0.0 94.2 5.2 0.5 0.1 0.0 95.4 4.0 0.4 0.2 0.0

0.5 50 60.3 30.4 7.3 2.0 92.3 6.9 0.7 0.2 0.2 93.0 6.0 0.9 0.1 0.1 94.3 5.2 0.5 0.1 0.0 96.0 3.4 0.4 0.2 0.1
100 80.1 16.7 2.7 0.6 93.0 6.4 0.5 0.2 0.0 93.8 5.6 0.5 0.1 0.0 93.9 5.6 0.5 0.1 0.0 95.3 4.0 0.5 0.2 0.0
200 88.4 10.1 1.3 0.3 94.0 5.4 0.6 0.0 0.0 94.9 4.6 0.4 0.1 0.0 94.3 5.2 0.5 0.1 0.0 95.4 4.0 0.5 0.2 0.1

0.8 50 20.0 37.4 26.1 16.5 80.5 16.3 2.7 0.5 2.4 82.9 14.3 2.2 0.5 2.3 91.8 7.3 0.8 0.1 0.2 94.8 4.4 0.5 0.3 0.2
100 52.5 33.4 10.8 3.4 88.1 10.5 1.1 0.3 0.2 89.2 9.6 1.0 0.2 0.2 92.8 6.5 0.6 0.1 0.1 94.7 4.6 0.6 0.1 0.1
200 75.3 20.2 3.6 1.0 91.9 7.1 0.9 0.1 0.1 93.0 6.1 0.7 0.2 0.0 93.8 5.5 0.6 0.1 0.0 95.0 4.3 0.5 0.3 0.0

0.9 50 6.7 23.4 30.4 39.6 69.3 24.7 4.9 1.1 9.0 73.5 20.8 4.9 0.8 8.0 89.3 9.3 1.1 0.3 2.3 93.3 5.5 0.9 0.4 2.1
100 23.6 38.3 23.4 14.7 77.4 19.3 2.8 0.6 1.8 80.1 16.8 2.7 0.5 1.8 91.3 7.7 0.9 0.2 0.2 93.3 5.6 0.8 0.3 0.2
200 52.9 33.5 10.4 3.2 87.4 10.9 1.3 0.3 0.3 88.6 10.0 1.1 0.2 0.3 92.7 6.5 0.7 0.1 0.0 94.2 5.1 0.5 0.3 0.1

Notes: see Table 1.2



TABLE 4.1: E	
���
�� R���
���� F������
��� �� A��	
����

��� B�������
 C�-����������� R�� T����. VAR(2) M����
&��' ��� r0 = 0, A�����������2� S��
'����
 V���������

Q0,T Q̃∗iid
0,T Q̃∗w

0,T Q∗iid
0,T Q∗w

0,T

γ T ERF ERF ERF RC ERF ERF RC
0.0 50 33.9 14.5 8.6 0.3 14.4 4.2 0.1

100 28.5 19.0 8.2 0.0 19.0 5.2 0.0
200 26.9 21.5 7.3 0.0 21.4 5.6 0.0

0.5 50 51.5 17.3 11.6 1.0 14.4 4.7 0.4
100 35.7 18.4 8.8 0.1 17.0 4.6 0.1
200 29.0 19.4 7.4 0.1 19.0 5.8 0.0

0.8 50 82.6 29.8 21.1 3.6 18.4 6.2 2.5
100 57.2 22.9 12.3 0.9 17.5 5.4 0.9
200 38.7 19.4 8.6 0.3 17.3 5.6 0.3

0.9 50 93.3 40.2 28.9 6.4 22.4 7.6 6.2
100 78.9 32.7 19.7 2.4 20.5 6.9 2.4
200 55.7 23.6 12.0 0.7 18.2 6.4 0.6

Notes: see Table 1.1

TABLE 4.2: S��������� P��
������ ��� D����	����� �'� C�-����������� R�� . VAR(2) M���� &��' ��� r0 = 0, A�����������2� S��
'����
 V���������

ASYMPTOTIC Unrestricted, IID BS Unrestricted, Wild BS Restricted, IID BS [CRT] Restricted, Wild BS [CRT]
γ T r = 0 1 2 3, 4 r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 RC

0.0 50 66.1 26.8 5.9 1.3 85.5 12.6 1.6 0.3 0.6 91.4 7.6 0.9 0.2 0.6 85.6 12.5 1.6 0.2 0.5 95.8 3.4 0.5 0.3 0.4
100 71.5 23.9 3.8 0.8 81.0 16.7 2.0 0.4 0.4 91.8 7.4 0.7 0.1 0.2 81.0 16.6 2.0 0.4 0.4 94.8 4.4 0.7 0.2 0.2
200 73.1 22.1 4.1 0.7 78.6 18.3 2.6 0.5 0.3 92.7 6.5 0.7 0.0 0.2 78.6 18.2 2.7 0.5 0.3 94.4 4.6 0.8 0.2 0.2

0.5 50 48.6 36.3 11.9 3.2 82.7 15.1 1.9 0.3 1.7 88.4 10.2 1.2 0.2 1.4 85.6 12.7 1.6 0.2 1.1 95.3 3.8 0.6 0.3 0.8
100 64.3 29.2 5.3 1.2 81.6 15.9 2.1 0.3 0.5 91.2 7.9 0.8 0.1 0.3 83.0 14.9 1.8 0.4 0.5 95.4 3.9 0.5 0.3 0.3
200 71.0 23.6 4.5 0.9 80.6 16.5 2.5 0.4 0.4 92.6 6.6 0.8 0.1 0.2 81.0 16.3 2.4 0.4 0.4 94.2 4.8 0.7 0.2 0.2

0.8 50 17.4 37.2 28.3 17.1 70.2 24.4 4.5 0.8 6.8 78.9 17.5 3.0 0.6 5.9 81.6 16.1 2.0 0.3 3.4 93.9 5.0 0.8 0.4 3.1
100 42.8 38.7 14.2 4.3 77.1 19.4 3.2 0.3 1.7 87.7 10.6 1.6 0.2 1.4 82.5 15.2 2.1 0.2 1.3 94.6 4.3 0.7 0.4 1.1
200 61.3 29.9 7.4 1.4 80.6 16.8 2.3 0.3 0.6 91.4 7.6 0.9 0.1 0.4 82.7 15.1 1.9 0.4 0.6 94.4 4.7 0.7 0.2 0.4

0.9 50 6.7 23.9 30.8 38.7 59.8 31.3 7.4 1.5 15.0 71.1 22.4 5.5 1.0 13.1 77.6 19.3 2.7 0.5 7.8 92.4 6.1 1.0 0.6 7.0
100 21.1 37.6 26.4 14.9 67.3 26.2 5.6 0.8 5.2 80.3 16.3 2.8 0.6 4.6 79.5 17.5 2.7 0.3 3.2 93.1 5.5 0.9 0.5 2.9
200 44.3 38.1 13.3 4.4 76.4 19.8 3.4 0.4 1.4 88.0 10.2 1.5 0.3 1.3 81.8 15.9 2.1 0.3 1.1 93.6 5.0 0.9 0.5 1.0

Notes: see Table 1.2



TABLE 5.1: E	
���
�� R���
���� F������
��� �� A��	
����

��� B�������
 C�-����������� R�� T����. VAR(2) M����
&��' ��� r0 = 0, S����� V��������� B��� 

Q0,T Q̃∗iid
0,T Q̃∗w

0,T Q∗iid
0,T Q∗w

0,T

γ T ERF ERF ERF RC ERF ERF RC
0.0 50 55.4 28.7 17.9 0.0 28.6 10.1 0.0

100 46.3 32.2 12.2 0.0 31.8 8.7 0.0
200 42.7 34.2 8.7 0.0 34.2 7.1 0.0

0.5 50 68.3 28.1 18.1 0.5 24.5 9.9 0.1
100 54.2 31.3 12.9 0.0 29.1 8.2 0.0
200 47.2 33.8 9.1 0.0 33.3 6.8 0.0

0.8 50 86.0 33.5 22.1 6.0 22.8 10.6 4.0
100 69.7 32.1 14.6 0.2 24.8 7.8 0.1
200 58.1 32.7 9.8 0.0 29.5 6.2 0.0

0.9 50 93.6 41.2 28.3 10.9 24.1 12.3 15.9
100 83.6 37.8 18.0 2.6 24.1 8.8 2.9
200 69.6 33.6 11.1 0.2 25.6 6.7 0.1

Notes: see Table 1.1

TABLE 5.2: S��������� P��
������ ��� D����	����� �'� C�-����������� R�� . VAR(2) M���� &��' ��� r0 = 0, S����� V��������� B��� 

ASYMPTOTIC Unrestricted, IID BS Unrestricted, Wild BS Restricted, IID BS [CRT] Restricted, Wild BS [CRT]
γ T r = 0 1 2 3, 4 r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 RC

0.0 50 44.7 40.9 12.5 2.0 71.3 25.1 3.2 0.4 1.6 82.1 15.3 2.2 0.4 1.2 71.4 25.1 3.1 0.4 1.5 90.0 8.6 1.2 0.3 0.7
100 53.7 36.3 8.8 1.2 67.8 27.9 4.1 0.3 1.4 87.8 10.7 1.3 0.2 0.6 68.2 27.6 3.9 0.3 1.3 91.3 7.7 0.9 0.2 0.5
200 57.3 34.2 7.6 0.9 65.8 29.4 4.4 0.4 1.1 91.3 7.7 0.8 0.2 0.3 65.9 29.2 4.5 0.4 1.0 92.9 6.3 0.6 0.2 0.2

0.5 50 31.7 45.8 18.4 4.1 71.9 24.7 3.1 0.2 3.8 81.9 15.8 2.0 0.3 3.0 75.5 21.8 2.5 0.2 2.2 90.1 8.7 1.0 0.2 1.0
100 45.8 40.2 11.9 2.1 68.7 26.3 4.5 0.4 1.9 87.1 10.8 1.8 0.2 1.0 70.9 24.9 4.0 0.3 1.7 91.8 7.1 1.0 0.1 0.6
200 52.8 37.1 8.7 1.4 66.3 29.2 4.2 0.4 1.3 90.9 8.0 1.0 0.1 0.4 66.8 28.8 4.1 0.3 1.3 93.2 6.1 0.6 0.1 0.4

0.8 50 14.0 41.7 31.9 12.4 66.5 29.1 4.2 0.2 15.7 77.9 19.0 2.8 0.3 13.5 77.2 20.8 1.9 0.1 8.2 89.4 9.4 1.1 0.2 6.5
100 30.3 45.8 19.2 4.7 67.9 28.1 3.7 0.3 4.7 85.4 12.8 1.6 0.2 2.6 75.2 22.3 2.4 0.1 2.7 92.2 6.7 0.9 0.1 1.2
200 41.9 42.5 13.0 2.6 67.3 28.2 4.2 0.4 2.4 90.2 8.7 0.9 0.2 0.9 70.5 25.8 3.4 0.3 1.9 93.8 5.7 0.5 0.1 0.5

0.9 50 6.5 30.2 36.5 26.9 58.8 35.2 5.7 0.3 27.4 71.7 24.1 3.8 0.4 23.7 75.9 21.6 2.3 0.1 21.9 87.7 10.7 1.4 0.2 19.5
100 16.4 43.5 29.5 10.6 62.3 33.2 4.3 0.3 11.8 82.0 15.8 2.0 0.2 7.8 75.9 21.9 2.0 0.1 6.9 91.2 7.8 0.9 0.1 4.5
200 30.4 46.2 19.0 4.4 66.4 29.1 4.1 0.4 4.6 88.9 9.7 1.2 0.2 1.9 74.4 23.0 2.5 0.1 2.8 93.3 6.1 0.6 0.1 0.9

Notes: see Table 1.2



TABLE 6.1: E	
���
�� R���
���� F������
��� �� A��	
����
 ��� B�������
 C�-�����������
R�� T����. VAR(2) M���� &��' ��� r0 = 1, IID G������� ������

Q0,T Q1,T Q̃∗iid
0,T Q̃∗w

0,T Q̃∗iid
1,T Q̃∗w

1,T Q∗iid
0,T Q∗w

0,T Q∗iid
1,T Q∗w

1,T

δ T ERF ERF ERF ERF RC ERF ERF RC ERF ERF RC ERF ERF RC

0.0 50 97.6 46.4 59.0 50.5 2.4 9.9 9.4 0.4 56.6 50.8 0.0 4.9 4.5 0.1

100 100.0 23.6 99.4 99.0 0.1 7.9 7.6 0.0 99.3 99.2 0.0 5.6 4.3 0.0

200 100.0 13.9 100.0 100.0 0.0 6.1 5.9 0.0 100.0 100.0 0.0 5.4 4.8 0.0

0.1 50 97.6 46.2 56.3 47.6 7.2 10.0 9.8 0.4 55.6 49.3 0.0 4.7 4.4 0.1

100 99.9 23.4 99.1 98.7 2.4 8.0 7.7 0.0 99.3 99.1 0.0 5.5 4.2 0.0

200 100.0 13.9 100.0 100.0 0.5 6.1 5.9 0.0 100.0 100.0 0.0 5.4 4.8 0.0

0.2 50 97.2 46.1 48.5 40.7 24.1 9.9 9.2 0.7 52.7 46.2 0.0 4.7 4.3 0.1

100 99.9 23.1 98.2 97.2 29.0 8.6 8.2 0.0 99.1 98.8 0.0 5.6 4.2 0.0

200 100.0 13.6 100.0 100.0 34.4 6.8 6.6 0.0 100.0 100.0 0.0 5.5 4.8 0.0

0.3 50 97.1 46.0 41.7 35.3 48.8 10.4 10.2 1.6 50.2 44.0 0.0 4.7 4.2 0.1

100 100.0 22.7 94.6 92.7 73.4 9.2 9.1 0.0 98.9 98.5 0.0 5.4 4.3 0.0

200 100.0 13.2 100.0 100.0 91.6 9.1 8.5 0.0 100.0 100.0 0.0 5.5 4.7 0.0
Notes: see Table 1.1

TABLE 6.2: S��������� P��
������ ��� D����	����� �'� C�-����������� R�� . VAR(2) M���� &��' ��� r0 = 1, IID G������� ������

ASYMPTOTIC Unrestricted, IID BS Unrestricted, Wild BS Restricted, IID BS [CRT] Restricted, Wild BS [CRT]
δ T r = 0 1 2 3, 4 r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 RC

0.0 50 2.8 51.2 32.9 13.1 41.0 49.2 8.5 1.3 3.8 49.5 41.4 8.0 1.2 3.5 43.4 51.7 4.3 0.6 0.3 49.2 46.4 3.6 0.8 0.3
100 0.1 78.0 18.1 3.8 0.7 91.4 7.2 0.7 0.3 1.0 91.4 6.8 0.8 0.3 0.7 93.7 5.1 0.5 0.1 0.8 94.9 3.5 0.8 0.1
200 0.0 86.8 11.6 1.6 0.0 93.9 5.4 0.6 0.1 0.0 94.1 5.3 0.6 0.0 0.0 94.6 4.9 0.5 0.0 0.0 95.2 4.1 0.6 0.0

0.1 50 2.6 51.0 32.6 13.8 43.7 46.4 8.4 1.5 8.5 52.4 38.1 8.3 1.3 8.3 44.4 50.9 4.1 0.5 0.2 50.7 45.0 3.4 0.9 0.2
100 0.1 76.8 19.1 4.0 0.9 91.1 7.4 0.7 2.6 1.3 91.0 6.9 0.8 2.7 0.8 93.8 5.1 0.4 0.1 0.9 94.9 3.4 0.9 0.1
200 0.0 86.5 11.8 1.7 0.0 93.9 5.5 0.6 0.5 0.0 94.2 5.3 0.6 0.6 0.0 94.7 4.8 0.5 0.0 0.0 95.2 4.2 0.6 0.0

0.2 50 2.4 51.0 32.4 14.2 51.5 38.7 8.4 1.5 25.3 59.3 31.8 7.6 1.3 25.2 47.3 48.0 4.1 0.6 0.2 53.8 42.1 3.3 0.8 0.2
100 0.0 76.4 19.5 4.0 1.8 89.6 7.8 0.8 29.3 2.8 88.9 7.4 0.9 29.1 0.9 93.6 5.1 0.4 0.1 1.2 94.6 3.4 0.8 0.1
200 0.0 86.1 12.1 1.8 0.0 93.2 6.1 0.7 34.3 0.0 93.4 5.8 0.8 34.4 0.0 94.5 5.0 0.5 0.0 0.0 95.2 4.3 0.6 0.0

0.3 50 2.4 51.2 32.5 13.9 58.3 31.6 8.4 1.7 49.7 64.7 25.6 8.0 1.7 49.4 49.8 45.6 4.1 0.6 0.2 56.0 40.0 3.2 0.9 0.2
100 0.0 76.3 19.5 4.1 5.5 85.3 8.4 0.9 73.6 7.3 83.6 8.1 1.0 73.4 1.1 93.5 5.0 0.4 0.1 1.5 94.2 3.6 0.8 0.1
200 0.0 86.1 12.1 1.8 0.0 90.9 8.0 1.1 91.5 0.0 91.6 7.3 1.1 91.6 0.0 94.5 5.0 0.5 0.0 0.0 95.3 4.2 0.6 0.0

Notes: see Table 1.2



TABLE 7.1: E	
���
�� R���
���� F������
��� �� A��	
����
 ��� B�������
 C�-�����������
R�� T����. VAR(2) M���� &��' ��� r0 = 1, IID t(5) ������

Q0,T Q1,T Q̃∗iid
0,T Q̃∗w

0,T Q̃∗iid
1,T Q̃∗w

1,T Q∗iid
0,T Q∗w

0,T Q∗iid
1,T Q∗w

1,T

δ T ERF ERF ERF ERF RC ERF ERF RC ERF ERF RC ERF ERF RC

0.0 50 97.8 46.5 56.1 49.0 2.3 10.4 9.7 0.4 54.2 49.5 0.0 5.0 4.8 0.1
100 100.0 24.5 99.2 98.6 0.1 7.8 7.9 0.0 99.3 98.6 0.0 5.5 4.9 0.0
200 100.0 14.0 100.0 100.0 0.0 6.0 6.5 0.0 100.0 100.0 0.0 5.0 5.1 0.0

0.1 50 97.6 46.4 54.6 46.5 6.6 10.2 9.6 0.4 53.4 48.7 0.0 4.8 4.4 0.2
100 100.0 24.1 99.1 98.2 2.4 7.7 7.9 0.0 99.2 98.7 0.0 5.2 4.8 0.0
200 100.0 14.0 100.0 100.0 0.4 5.9 6.5 0.0 100.0 100.0 0.0 5.2 5.2 0.0

0.2 50 97.3 46.5 48.1 40.4 24.3 9.6 9.3 0.8 51.3 46.4 0.1 4.5 4.4 0.2
100 100.0 23.9 97.9 96.6 30.1 8.9 8.7 0.0 99.0 98.3 0.0 5.1 4.6 0.0
200 100.0 13.6 100.0 100.0 34.3 6.6 6.9 0.0 100.0 100.0 0.0 5.1 5.2 0.0

0.3 50 96.9 46.6 42.2 35.6 49.5 9.6 9.2 1.8 48.8 44.8 0.0 4.5 4.3 0.2
100 100.0 23.2 93.8 91.8 73.6 10.1 9.3 0.0 98.9 98.2 0.0 5.2 4.6 0.0
200 100.0 13.2 100.0 100.0 91.8 8.4 9.1 0.0 100.0 100.0 0.0 5.2 5.2 0.0

Notes: see Table 1.1

TABLE 7.2: S��������� P��
������ ��� D����	����� �'� C�-����������� R�� . VAR(2) M���� &��' ��� r0 = 1, IID t(5) ������

ASYMPTOTIC Unrestricted, IID BS Unrestricted, Wild BS Restricted, IID BS [CRT] Restricted, Wild BS [CRT]
δ T r = 0 1 2 3, 4 r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 RC

0.0 50 2.9 51.5 32.6 13.1 43.9 45.8 9.0 1.3 3.7 51.0 39.7 7.9 1.5 3.5 45.8 49.2 4.4 0.6 0.3 50.5 45.2 3.7 0.7 0.3
100 0.0 76.8 19.0 4.1 0.8 91.4 7.1 0.8 0.3 1.4 90.7 7.0 0.9 0.4 0.7 93.8 4.9 0.5 0.1 1.4 93.8 4.0 0.9 0.2
200 0.0 87.1 11.0 1.9 0.0 94.0 5.4 0.6 0.0 0.0 93.5 5.9 0.6 0.1 0.0 95.0 4.6 0.5 0.0 0.0 94.9 4.4 0.7 0.1

0.1 50 2.4 51.5 32.8 13.4 45.4 44.5 8.9 1.2 7.7 53.5 37.3 7.8 1.4 8.0 46.6 48.7 4.3 0.5 0.2 51.3 44.6 3.5 0.7 0.3
100 0.0 76.1 19.7 4.2 0.9 91.4 7.0 0.7 2.5 1.8 90.3 7.0 1.0 2.7 0.8 93.9 4.7 0.5 0.1 1.3 93.9 3.9 0.9 0.2
200 0.0 86.6 11.5 1.9 0.0 94.1 5.3 0.6 0.4 0.0 93.5 5.9 0.6 0.4 0.0 94.8 4.8 0.5 0.0 0.0 94.8 4.4 0.8 0.1

0.2 50 2.2 51.5 32.6 13.7 51.9 38.6 8.3 1.2 25.2 59.6 31.7 7.2 1.5 25.2 48.7 46.9 3.9 0.5 0.3 53.6 42.4 3.3 0.7 0.3
100 0.0 75.7 19.7 4.6 2.1 88.9 8.0 0.9 29.9 3.4 88.0 7.6 1.1 30.7 1.0 93.9 4.6 0.5 0.1 1.7 93.7 3.8 0.9 0.2
200 0.0 86.0 12.0 2.0 0.0 93.4 5.8 0.7 34.4 0.0 93.1 6.2 0.8 34.2 0.0 94.9 4.7 0.5 0.0 0.0 94.8 4.4 0.8 0.0

0.3 50 2.2 51.3 32.6 14.0 57.8 32.9 7.7 1.5 50.3 64.4 26.8 7.2 1.6 50.4 51.2 44.3 4.0 0.4 0.3 55.2 40.9 3.2 0.7 0.2
100 0.0 75.5 19.9 4.5 6.2 83.7 8.9 1.3 73.6 8.3 82.5 8.0 1.2 73.7 1.1 93.6 4.8 0.5 0.1 1.8 93.6 3.7 0.9 0.1
200 0.0 86.0 12.0 2.0 0.0 91.6 7.7 0.7 91.8 0.0 90.9 8.2 1.0 91.9 0.0 94.8 4.7 0.6 0.0 0.0 94.8 4.4 0.8 0.0

Notes: see Table 1.2



TABLE 8.1: E	
���
�� R���
���� F������
��� �� A��	
����
 ��� B�������
 C�-�����������
R�� T����. VAR(2) M���� &��' ��� r0 = 1, GARCH ������

Q0,T Q1,T Q̃∗iid
0,T Q̃∗w

0,T Q̃∗iid
1,T Q̃∗w

1,T Q∗iid
0,T Q∗w

0,T Q∗iid
1,T Q∗w

1,T

δ T ERF ERF ERF ERF RC ERF ERF RC ERF ERF RC ERF ERF RC

0.0 50 97.3 47.7 58.2 50.4 2.6 10.5 9.2 0.4 55.6 51.1 0.1 5.4 4.0 0.2
100 100.0 24.8 99.1 98.6 0.1 8.6 7.7 0.0 99.2 98.8 0.0 6.0 5.1 0.0
200 100.0 14.3 100.0 100.0 0.0 7.2 6.1 0.0 100.0 100.0 0.0 6.2 4.9 0.0

0.1 50 97.5 47.3 55.3 47.1 7.4 10.4 9.3 0.5 54.7 49.6 0.0 5.0 4.0 0.1
100 100.0 24.9 98.8 98.2 2.8 8.8 7.7 0.0 99.1 98.7 0.0 6.2 5.1 0.0
200 100.0 14.3 100.0 100.0 0.5 7.0 6.0 0.0 100.0 100.0 0.0 6.1 4.9 0.0

0.2 50 97.2 46.8 49.6 41.7 25.1 10.3 9.2 0.7 52.8 47.3 0.0 4.8 4.1 0.2
100 100.0 24.1 97.5 96.3 30.6 9.3 8.5 0.0 98.6 98.2 0.0 6.3 5.1 0.0
200 100.0 14.1 100.0 100.0 34.5 7.6 6.8 0.0 100.0 100.0 0.0 6.1 4.7 0.0

0.3 50 96.7 46.7 44.3 37.9 48.8 9.6 9.0 1.7 50.8 45.5 0.0 4.8 3.9 0.1
100 99.9 23.5 91.6 88.8 72.8 10.5 9.5 0.0 98.0 97.4 0.0 6.3 5.1 0.0
200 100.0 13.8 100.0 100.0 91.0 9.8 8.1 0.0 100.0 100.0 0.0 6.0 4.7 0.0

Notes: see Table 1.1

TABLE 8.2: S��������� P��
������ ��� D����	����� �'� C�-����������� R�� . VAR(2) M���� &��' ��� r0 = 1, GARCH ������

ASYMPTOTIC Unrestricted, IID BS Unrestricted, Wild BS Restricted, IID BS [CRT] Restricted, Wild BS [CRT]
δ T r = 0 1 2 3, 4 r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 RC

0.0 50 3.5 49.7 34.0 12.8 41.9 47.7 9.0 1.5 3.6 49.6 41.4 7.7 1.3 4.1 44.4 50.2 4.7 0.6 0.2 48.9 47.2 3.1 0.8 0.2
100 0.1 76.1 19.8 3.9 0.9 90.6 7.7 0.9 0.3 1.4 90.9 6.9 0.8 0.3 0.8 93.2 5.5 0.6 0.0 1.2 93.8 4.2 0.9 0.1
200 0.0 86.3 11.7 2.0 0.0 92.8 6.5 0.7 0.2 0.0 93.9 5.5 0.6 0.1 0.0 93.8 5.6 0.6 0.1 0.0 95.1 4.0 0.9 0.1

0.1 50 2.9 50.4 33.8 12.9 44.7 45.1 8.9 1.3 8.4 52.9 38.2 7.5 1.5 8.9 45.4 49.7 4.4 0.5 0.2 50.4 45.7 3.2 0.7 0.3
100 0.0 75.6 20.3 4.1 1.2 90.0 7.9 0.9 2.9 1.9 90.5 6.8 0.9 3.0 1.0 92.9 5.7 0.5 0.1 1.3 93.7 4.2 0.9 0.1
200 0.0 85.9 12.0 2.1 0.0 93.0 6.3 0.7 0.7 0.0 94.0 5.4 0.6 0.6 0.0 93.9 5.6 0.6 0.1 0.0 95.1 4.0 0.9 0.0

0.2 50 2.7 50.0 34.1 13.3 50.4 39.5 8.9 1.2 26.2 58.3 32.8 7.6 1.3 25.8 47.3 48.0 4.4 0.4 0.2 52.7 43.4 3.1 0.8 0.2
100 0.0 75.2 20.5 4.3 2.6 88.1 8.2 1.1 30.9 3.7 87.9 7.4 1.1 30.5 1.4 92.3 5.8 0.5 0.1 1.8 93.2 4.2 0.9 0.0
200 0.0 85.7 12.1 2.2 0.0 92.4 6.8 0.8 34.7 0.0 93.2 6.1 0.7 34.5 0.0 93.9 5.5 0.6 0.1 0.0 95.3 4.0 0.8 0.1

0.3 50 2.7 49.6 34.3 13.5 55.7 34.9 8.0 1.4 49.6 62.1 29.3 7.4 1.2 49.3 49.2 46.1 4.2 0.5 0.2 54.5 41.7 3.1 0.7 0.2
100 0.0 75.2 20.2 4.6 8.4 81.0 9.3 1.2 72.9 11.2 79.3 8.4 1.0 72.8 2.0 91.7 5.8 0.6 0.1 2.6 92.3 4.2 1.0 0.0
200 0.0 85.7 12.1 2.2 0.0 90.2 8.9 0.9 91.1 0.0 91.9 7.5 0.7 91.0 0.0 94.0 5.5 0.5 0.1 0.0 95.3 3.9 0.8 0.1

Notes: see Table 1.2



TABLE 9.1: E	
���
�� R���
���� F������
��� �� A��	
����
 ��� B�������
 C�-�����������
R�� T����. VAR(2) M���� &��' ��� r0 = 1, A�����������2� S��
'����
 V���������

Q0,T Q1,T Q̃∗iid
0,T Q̃∗w

0,T Q̃∗iid
1,T Q̃∗w

1,T Q∗iid
0,T Q∗w

0,T Q∗iid
1,T Q∗w

1,T

δ T ERF ERF ERF ERF RC ERF ERF RC ERF ERF RC ERF ERF RC

0.0 50 96.2 52.4 60.1 46.8 7.1 16.0 12.0 4.2 58.6 43.8 1.8 10.5 6.6 3.4
100 99.6 36.2 96.8 90.1 1.5 18.1 9.9 1.1 96.7 90.6 0.7 15.5 6.4 1.1
200 100.0 26.0 100.0 99.5 0.3 16.2 7.2 0.3 100.0 99.4 0.2 15.1 5.4 0.3

0.1 50 95.9 51.6 59.7 46.0 15.2 15.3 11.3 4.9 59.5 45.0 1.7 9.9 6.8 3.3
100 99.5 35.5 95.8 88.8 8.5 18.0 9.9 0.9 96.5 90.1 0.6 15.0 6.2 1.0
200 100.0 25.9 100.0 99.5 4.1 16.1 7.2 0.3 100.0 99.4 0.2 14.9 5.2 0.2

0.2 50 94.3 49.5 58.3 46.9 31.3 14.9 11.0 7.6 58.8 45.9 1.6 9.1 6.4 3.0
100 98.8 34.5 91.1 82.1 33.6 18.3 10.1 1.2 94.2 86.3 0.6 14.3 6.2 0.9
200 99.9 25.5 99.8 98.4 37.0 17.0 7.4 0.2 99.8 98.9 0.2 14.8 5.3 0.2

0.3 50 92.7 48.3 57.8 48.3 49.3 14.3 10.0 10.9 57.7 46.5 1.8 8.5 5.9 3.2
100 97.7 33.2 83.3 75.2 65.8 18.3 10.1 2.1 90.9 82.5 0.6 14.0 5.8 0.9
200 99.8 25.1 98.4 94.6 80.2 19.0 8.4 0.2 99.7 98.0 0.2 14.6 5.4 0.2

Notes: see Table 1.1

TABLE 9.2: S��������� P��
������ ��� D����	����� �'� C�-����������� R�� . VAR(2) M���� &��' ��� r0 = 1, A�����������2� S��
'����
 V���������

ASYMPTOTIC Unrestricted, IID BS Unrestricted, Wild BS Restricted, IID BS [CRT] Restricted, Wild BS [CRT]
δ T r = 0 1 2 3, 4 r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 RC

0.0 50 7.0 43.9 34.2 14.9 39.9 44.1 13.9 2.0 9.6 53.2 35.3 10.1 1.4 8.9 41.4 48.2 9.3 1.1 3.9 56.2 38.9 3.8 1.1 3.4
100 2.2 64.6 27.0 6.2 3.2 78.7 15.9 2.2 2.5 9.9 80.3 8.8 1.0 2.2 3.3 81.2 13.8 1.7 1.7 9.4 84.6 5.0 1.1 1.4
200 0.1 75.0 21.2 3.7 0.0 83.8 14.3 1.9 0.7 0.5 92.3 6.4 0.8 0.5 0.0 84.9 13.5 1.7 0.7 0.6 94.1 4.5 0.9 0.5

0.1 50 5.7 43.5 35.3 15.4 40.3 44.6 13.1 2.1 17.4 54.0 35.2 9.5 1.3 17.2 40.5 49.7 8.8 1.0 3.7 55.0 40.1 3.9 1.1 3.0
100 1.2 64.2 27.9 6.8 4.3 77.7 15.9 2.2 9.5 11.2 79.0 8.8 1.0 9.0 3.5 81.5 13.2 1.8 1.6 9.9 84.2 4.8 1.0 1.4
200 0.0 74.5 21.7 3.9 0.0 83.9 14.3 1.8 4.5 0.5 92.3 6.3 0.9 4.3 0.1 85.1 13.1 1.8 0.6 0.6 94.2 4.4 0.8 0.4

0.2 50 4.4 43.5 36.2 15.9 41.7 43.6 12.7 1.9 33.4 53.1 36.3 9.2 1.4 33.3 41.2 49.7 8.0 1.0 3.4 54.1 41.2 3.6 1.1 2.7
100 0.5 63.6 28.9 7.0 8.9 72.9 15.9 2.3 34.1 17.9 72.1 8.9 1.1 34.1 5.8 79.9 12.6 1.7 1.4 13.7 80.6 4.8 1.0 1.1
200 0.0 74.2 21.7 4.1 0.2 82.8 14.9 2.1 37.1 1.6 91.0 6.5 1.0 37.1 0.2 85.0 13.1 1.8 0.5 1.1 93.7 4.4 0.9 0.4

0.3 50 3.8 43.7 36.4 16.1 42.2 43.6 12.3 1.9 51.3 51.7 38.7 8.2 1.5 50.8 42.3 49.2 7.6 0.8 3.5 53.5 42.2 3.3 1.0 3.0
100 0.4 63.4 29.0 7.2 16.7 65.1 15.9 2.4 66.4 24.8 65.3 8.8 1.1 66.2 9.1 76.9 12.3 1.7 1.4 17.6 77.2 4.3 1.0 1.1
200 0.0 74.0 21.7 4.3 1.7 79.4 16.7 2.3 80.3 5.4 86.2 7.4 1.0 80.3 0.3 85.1 13.0 1.6 0.6 2.0 92.6 4.5 0.9 0.4

Notes: see Table 1.2



TABLE 10.1: E	
���
�� R���
���� F������
��� �� A��	
����
 ��� B�������
 C�-�����������
R�� T����. VAR(2) M���� &��' ��� r0 = 1, S����� V��������� B��� 

Q0,T Q1,T Q̃∗iid
0,T Q̃∗w

0,T Q̃∗iid
1,T Q̃∗w

1,T Q∗iid
0,T Q∗w

0,T Q∗iid
1,T Q∗w

1,T

δ T ERF ERF ERF ERF RC ERF ERF RC ERF ERF RC ERF ERF RC

0.0 50 97.5 53.6 65.1 53.2 14.8 12.8 9.9 8.0 65.6 49.8 2.5 8.9 6.2 7.1
100 99.9 41.8 98.9 95.5 2.5 18.8 10.0 0.3 98.9 95.1 0.1 15.4 6.8 0.2
200 100.0 34.2 100.0 100.0 0.1 19.9 7.5 0.0 100.0 100.0 0.0 18.7 5.9 0.0

0.1 50 97.3 53.6 63.3 52.0 19.8 12.5 9.8 8.3 65.9 49.0 2.6 8.8 6.1 6.6
100 99.9 41.9 98.8 94.6 9.1 18.7 10.3 0.2 98.9 94.5 0.1 15.6 6.9 0.2
200 100.0 34.3 100.0 100.0 3.4 20.0 7.6 0.0 100.0 100.0 0.0 18.7 5.9 0.0

0.2 50 97.2 52.3 60.1 47.9 31.4 11.7 8.9 9.2 64.8 47.3 2.6 8.6 5.7 6.4
100 99.9 41.4 97.8 91.9 31.5 18.7 10.2 0.3 98.6 94.0 0.1 15.5 6.7 0.1
200 100.0 34.3 100.0 100.0 34.5 20.9 7.7 0.0 100.0 100.0 0.0 18.9 5.6 0.0

0.3 50 96.9 51.4 57.2 45.5 45.7 11.3 8.4 11.3 63.4 46.5 2.7 8.1 5.4 6.4
100 99.9 41.1 95.9 86.6 61.2 18.7 10.3 0.5 98.7 93.4 0.1 15.8 6.6 0.2
200 100.0 34.0 100.0 100.0 79.9 21.5 8.6 0.0 100.0 100.0 0.0 18.4 5.7 0.0

Notes: see Table 1.1

TABLE 10.2: S��������� P��
������ ��� D����	����� �'� C�-����������� R�� . VAR(2) M���� &��' ��� r0 = 1, S����� V��������� B��� 

ASYMPTOTIC Unrestricted, IID BS Unrestricted, Wild BS Restricted, IID BS [CRT] Restricted, Wild BS [CRT]
δ T r = 0 1 2 3, 4 r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 RC r = 0 1 2 3, 4 RC

0.0 50 2.5 43.9 40.5 13.1 34.9 52.4 11.9 0.9 22.4 46.9 43.5 8.8 0.9 21.5 34.4 56.7 8.4 0.5 8.9 50.2 43.7 5.5 0.6 7.9
100 0.1 58.1 35.1 6.8 1.1 80.1 17.7 1.0 6.6 4.5 85.4 9.3 0.8 5.1 1.1 83.5 14.7 0.8 2.8 4.9 88.3 6.3 0.5 1.4
200 0.0 65.8 29.4 4.8 0.0 80.1 18.2 1.7 2.5 0.0 92.5 6.8 0.7 1.2 0.0 81.3 17.1 1.5 2.0 0.0 94.1 5.3 0.6 0.7

0.1 50 2.7 43.8 40.7 12.9 36.7 50.9 11.7 0.8 26.7 48.0 42.6 8.6 0.9 25.8 34.1 57.1 8.3 0.5 8.3 51.0 43.1 5.3 0.6 7.3
100 0.1 58.0 35.0 6.9 1.2 80.2 17.6 1.0 13.0 5.4 84.4 9.5 0.7 11.3 1.1 83.3 14.7 0.9 2.9 5.5 87.7 6.4 0.5 1.5
200 0.0 65.7 29.6 4.7 0.0 80.0 18.4 1.7 5.7 0.0 92.5 6.8 0.7 4.4 0.0 81.3 17.2 1.5 2.0 0.0 94.2 5.3 0.6 0.7

0.2 50 2.8 44.9 39.8 12.5 39.9 48.5 10.9 0.7 37.4 52.1 39.4 7.7 0.8 36.6 35.2 56.2 8.1 0.5 8.2 52.7 41.7 5.2 0.4 7.2
100 0.1 58.5 34.6 6.8 2.2 79.1 17.5 1.2 34.5 8.1 81.7 9.3 0.9 33.3 1.4 83.2 14.6 0.9 2.9 6.0 87.3 6.2 0.5 1.6
200 0.0 65.8 29.6 4.7 0.0 79.1 19.1 1.7 36.0 0.0 92.3 6.8 0.9 35.3 0.0 81.1 17.5 1.4 1.9 0.0 94.4 5.1 0.5 0.7

0.3 50 3.1 45.5 39.3 12.1 42.8 46.1 10.4 0.7 50.5 54.5 37.3 7.4 0.9 49.9 36.6 55.3 7.7 0.4 8.7 53.5 41.2 5.0 0.3 7.3
100 0.1 58.8 34.5 6.6 4.1 77.1 17.4 1.3 62.9 13.5 76.3 9.4 0.9 62.2 1.3 83.0 14.8 0.9 3.0 6.6 86.8 6.0 0.6 1.7
200 0.0 66.0 29.4 4.6 0.0 78.5 19.9 1.7 80.4 0.0 91.4 7.7 0.9 80.1 0.0 81.6 17.1 1.3 2.0 0.0 94.3 5.1 0.6 0.7

Notes: see Table 1.2
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