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Abstract

We consider the nonstationary fractional model ∆dXt = εt with εt i.i.d.(0, σ2) and
d > 1/2. We derive an analytical expression for the main term of the asymptotic bias
of the maximum likelihood estimator of d conditional on initial values, and we discuss
the role of the initial values for the bias. The results are partially extended to other
fractional models, and three different applications of the theoretical results are given.
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1 Introduction
Traditionally, inference in nonstationary autoregressive models is conditional on initial val-
ues, for example in the AR(k) model conditioning on k initial values implies that maximum
likelihood estimation is equivalent to ordinary least squares. This was applied in classical
work on ARIMA models by, e.g., Box and Jenkins (1970), and was introduced for fractional
time series models by Li and McLeod (1986) and Robinson (1994), in the latter case for
hypothesis testing purposes, and in both cases assuming that the initial values are all zero.
The conditional maximum likelihood estimator has been very widely applied in the literature,
also for fractional time series models, where the initial values have typically been assumed
to be zero.
Recently, inference conditional on (non-zero) initial values has been advocated for non-

stationary fractional time series models by Johansen and Nielsen (2010, 2012)– henceforth
JN (2010, 2012)– and Tschernig, Weber, and Weigand (2010) in theoretical work. In em-
pirical work conditional inference has been applied by, for example, Carlini, Manzoni, and
Mosconi (2010) and Bollerslev, Osterreider, Sizova, and Tauchen (2012) to high-frequency
stock market data, Hualde and Robinson (2011) to aggregate income and consumption data,
Osterrieder and Schotman (2011) to real estate data, and Rossi and Santucci de Magistris
(2013) to futures prices.
The purpose of this paper is to investigate the magnitude of the influence of initial

values on the bias of the Gaussian (quasi-)maximum likelihood estimator of the fractional
parameter, d, conditional on initial values. For analytic tractability we consider the simplest
model for fractional processes, ∆dXt = εt with εt i.i.d.(0, σ2). In practice we have to decide
how to split a given sample into initial values and observations. In order to discuss this we
derive an analytical expression for the asymptotic second-order bias term via a higher-order
stochastic expansion of the estimator.
In the stationary case, 0 < d < 1/2, there is a literature on Edgeworth expansions of

the distribution of the (unconditional) Gaussian maximum likelihood estimator based on the
joint density of the data, (X1, . . . , XT ). In particular, Lieberman and Phillips (2004) find
simple expressions for the second-order term, from which we can derive the main term of
the bias in that case. We have not found any results on the nonstationary case, d > 1/2, for
the estimator based on conditioning on initial values.
The remainder of the paper is organized as follows. In the next section we present the

model and our main results. In Section 3 we give three applications of the theoretical results
to (i) illustrate the bias numerically, (ii) discuss (non-)invariance of different fractional models
to location and scale, (iii) an empirical data set. Section 4 concludes. Proofs of our main
results and some mathematical details are given in the appendices.

2 Model and main results
We consider the model

∆dXt = εt, εt ∼ i.i.d.(0, σ2), t = 1, . . . , T, (1)

where d ≥ 0 and σ2 > 0. To focus on estimation of d we consider σ2 fixed at the true value
σ20 > 0. We denote the true value of d by d0.
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The fractional coeffi cients πj(u) are defined as the coeffi cients in an expansion of (1−z)−u,
which are

πj(u) =
Γ(u+ j)

Γ(u)Γ(j + 1)
=
u(u+ 1) . . . (u+ j − 1)

j!
, (2)

where Γ(d) denotes the Gamma function. The difference operators ∆dXt, ∆d
+Xt, and ∆d

−Xt

are defined as

∆dXt =

∞∑
n=0

πn(−d)Xt−n =

t−1∑
n=0

πn(−d)Xt−n +

∞∑
n=0

πn+t(−d)X−n = ∆d
+Xt + ∆d

−Xt. (3)

Thus infinitely many past values are needed to calculate the fractional differences. Several
useful results for the fractional coeffi cients and their derivatives are collected in Appendix
A.
The model (1) is a special case of several more general models. The univariate fractional

autoregressive model of JN (2010) is

∆dXt = π∆d−bLbXt +
k∑
j=1

ΓjL
j
b∆

dXt + εt,

where Lb = 1 − ∆b denotes the fractional lag operator. For this model, the conditional
likelihood depends on the residuals, see JN (2010, p. 52),

εt(d, φ) = ∆dXt − πLb∆d−bXt −
k∑
j=1

Ljb∆
dXt

= ∆−bΨ(Lb)∆
dXt = a(φ, L)∆dXt

with φ = (b, π,Γ1, . . . ,Γk). Another well-known alternative model is the ARFIMA model,

A(L)∆dXt = B(L)εt,

where A(L) and B(L) depend on a parameter vector ψ and B(z) 6= 0 for |z| ≤ 1. In this
case the conditional likelihood depends on the residuals

εt(d, ψ) = B(L)−1A(L)∆dXt = b(ψ,L)∆dXt.

For both the fractional autoregressive model and the ARFIMA model the analysis would
depend on the derivatives of the conditional likelihood function, which would in turn be
simple functions of the derivatives of the residuals. Again, to focus on estimation of d we
consider the remaining parameters, φ and ψ, respectively, fixed at their true values. For a
function f(d) we denote the derivative of f with respect to d as Df(d) = ∂

∂d
f(d) (Euler’s

notation), and the relevant derivatives are

Dmεt(d, ψ)|d0,ψ0 = b(ψ0, L)Dm∆dXt|d0
= (log ∆)mb(ψ0, L)∆d0Xt = (log ∆)mεt
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for the ARFIMA model, and the same argument applies for the fractional autoregressive
model. Thus, for both these more general models, the derivatives of the conditional likelihood
with respect to d, when evaluated at the true values, are identical to those of the residuals
from the simpler model (1). We can therefore apply the results from the simpler model more
generally, but only if we know the parameter ψ0 (or φ0). If ψ (or φ) has to be estimated,
the analysis becomes much more complicated. We therefore focus our analysis on the simple
model.
We consider maximum likelihood estimation of d0 based on observations X1, . . . , XT gen-

erated by (1) for fixed bounded initial values, that is, conditional onX−n, n ≥ 0, as developed
in JN (2010, 2012). For the asymptotic analysis we make the following assumptions.

Assumption 1 The errors εt are i.i.d.(0, σ20) with finite fourth moment and known variance
σ20 > 0.

Assumption 2 The initial values X−n, n = 0, 1, . . . , are bounded, i.e. supn≥0 |X−n| ≤ c <
∞.

As remarked earlier, conditional maximum likelihood estimation has been very widely
applied in the literature for fractional time series models, especially in the nonstationary
case. However, to be able to calculate the fractional differences, the previous literature has
typically assumed that the initial values are all zero, i.e. that X−n = 0, n ≥ 0.
For a general set of initial values the solution of model (1) is given in the following lemma.

Lemma 1 Under Assumption 2, the solution of model (1) is

Xt = ∆−d0+ εt −∆−d0+ ∆d0
−Xt, t = 1, 2, . . . , T. (4)

Proof. From (3) and Lemma A.2 we see that ∆d0
−Xt =

∑∞
n=0 πn+t(−d0)X−n is bounded

in absolute value by c
∑∞

n=0(n + t)−d0−1 < ∞ if d0 > 0, so that ∆d0Xt and ∆d0
−Xt are well

defined. From (1) we then find εt = ∆d0Xt = ∆d0
+Xt + ∆d0

−Xt, t = 1, . . . , T . The operator
∆d0
+ only depends on Xt for t ≥ 1, and is invertible on the sequences which are zero for

t ≤ 0. The inverse ∆−d0+ is given by ∆−d0+ εt =
∑t−1

n=0 πn(d0)εt−n, which yields the solution for
t = 1, . . . , T, when applied to εt−∆d0

−Xt. See also Johansen (2008, Corollary 6 and Theorem
8) and JN (2010, Lemma 1).
The Gaussian (quasi-)log-likelihood, conditional on initial values, is

L(d) = −T
2

log σ20 −
1

2σ20

T∑
t=1

(∆dXt)
2 (5)

apart from a constant, and is a function of fractional differences of Xt. Of course the
likelihood function (5) depends on initial values through ∆dXt = ∆d

+Xt + ∆d
−Xt. The first

term is a function of the observations X1, . . . , XT , but the second is a function of infinitely
many initial values which are not all observed. Thus, in order to calculate (an approximation
to) the likelihood function we have to choose some initial values, say X̃−n, and calculate
∆d
−X̃t. A simple and commonly applied choice is X̃−n = 0, n ≥ 0, e.g. Hualde and Robinson

(2011).
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Another possibility is to set aside the first N observations as initial values as is usually
done in the analysis of an AR(k) model, in which case X̃−n = X−n for 0 ≤ n ≤ N − 1, and
we analyze the effect of doing so on the bias of the estimator for d under different choices
of the remaining X̃−n, n ≥ N . A simple choice is to set X̃−n = 0, n ≥ N , which corresponds
to setting X̃−n = X−n1{n<N}, where 1{A} denotes the indicator function for the event A.
A different choice is to use X̃−n = X−n, n < N , and X̃−n = X−N+1, n ≥ N , i.e., setting
the chosen initial values corresponding to unobserved initial values equal to the earliest
observed initial value. This corresponds to setting X̃0 = X0 and ∆X̃−n = ∆X−n1{n<N−1}.
We summarize these assumptions below and apply them in our main results.

Assumption 3 We set aside the N values X−n, n = 0, . . . , N − 1, as initial values, and
choose the initial values for the calculation of the fractional differences according to one of
the following possibilities:

0. X̃−n = X−n1{n<N}, N ≥ 0,

1. X̃0 = X0,∆X̃−n = ∆X−n1{n<N−1}, N ≥ 1.

With the chosen initial values we define ∆̃dXt = ∆d
+Xt + ∆d

−X̃t and obtain the following
approximation to the log-likelihood (5):

L̃(d) = −T
2

log σ20 −
1

2σ20

T∑
t=1

(∆̃dXt)
2. (6)

Thus, L̃(d) can be considered a type of quasi-likelihood with respect to both the initial
values and the distributional assumption. We also define the associated conditional (quasi-
)maximum likelihood estimator,

d̂ = arg max
d≥0

L̃(d). (7)

Because maximizing L(d) or L̃(d) is the same as minimizing a sum of squared residuals, the
estimator d̂ is sometimes referred to as the conditional sum-of-squares estimator.
The first-order asymptotic properties of d̂ under Assumptions 1 and 2 (but not necessarily

Assumption 3) are given in the following lemma, based on results of JN (2012) and Nielsen
(2012).

Lemma 2 Let the process Xt, t = 1, . . . , T, be generated by model (1) and suppose Assump-
tions 1 and 2 are satisfied. Then the estimator d̂ in (7) exists and is consistent on a compact

subset of R+ = {x ∈ R : x > 0}, and furthermore T 1/2(d̂− d0)
D→ N(0, (π2/6)−1).

Proof. From Lemma 1 we have that ∆̃dXt = ∆d−d0
+ εt−∆d−d0

+ ∆d0
−Xt+∆d

−X̃t, so that we need
to analyze product moments of the terms on the right-hand side, appropriately normalized,
when d belongs to a compact subset of R+. However, the deterministic terms ∆d−d0

+ ∆d0
−Xt

and ∆d
−X̃t are shown to be asymptotically uniformly negligible under Assumption 2 in JN

(2012, Lemma A.8(i)). This leaves the product moment
∑T

t=1(∆
d−d0
+ εt)

2, which is analyzed
in Nielsen (2012) under Assumption 1. Existence and consistency of d̂ on a compact subset
of R+ follows.
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To show asymptotic normality of d̂ we apply the usual expansion of the score function,

0 = DL̃(d̂) = DL̃(d0) + (d̂− d0)D2L̃(d∗),

where d∗ is an intermediate value satisfying |d∗ − d0| ≤ |d̂− d0|
P→ 0. The product moments

in D2L̃(d) are shown in JN (2010, Lemma C.4) and JN (2012, Lemma A.8(i)) to be tight,
or equicontinuous, in a neighborhood of d0, so that we can apply JN (2010, Lemma A.3) to
conclude that D2L̃(d∗) = D2L̃(d0) + oP (1), and we therefore analyze DL̃(d0) and D2L̃(d0).
From Lemmas B.1 and B.4 we find that T−1/2DL̃(d0) = −

∑t−1
j=1 j

−1εt−j + OP (T−1/2) and
T−1D2L̃(d0) = −π2/6 +OP (T−1/2), and the result follows from Lemmas B.2 and B.3.

2.1 Asymptotic bias

Our main result holds only for d0 > 1/2, that is, for nonstationary processes, which is
therefore assumed in the remainder of the paper.
To analyze the asymptotic bias of the estimator for d, and in particular how initial values

influence the bias, we need to examine higher-order terms in a stochastic expansion, see
Lawley (1956), of d̂. The conditional likelihood satisfies that DL̃(d0) = OP (T 1/2), D2L̃(d0) =
OP (T ), and D3L̃(d) = OP (T ) uniformly in a neighborhood of d0 and a Taylor series expansion
of DL̃(d̂) = 0 around d0 gives

0 = DL̃(d̂) = DL̃(d0) + (d− d0)D2L̃(d0) +
1

2
(d̂− d̂0)2D3L̃(d∗),

where d∗ is an intermediate value satisfying |d∗ − d0| ≤ |d̂ − d0|
P→ 0. We then insert

d̂ − d0 = T−1/2AT + T−1BT + OP (T−3/2) and find AT = −DL̃(d0)/D
2L̃(d0) and BT =

−(DL̃(d0))
2D3L̃(d∗)/(D2L̃(d0))

3, which we write as

T 1/2(d̂− d0) = −T
−1/2DL̃(d0)

T−1D2L̃(d0)
− 1

2
T−1/2(

T−1/2DL̃(d0)

T−1D2L̃(d0)
)2
T−1D3L̃(d∗)

T−1D2L̃(d0)
+OP (T−1). (8)

Based on this expansion we find another expansion d̂ − d0 = T−1/2ÃT + T−1B̃T + oP (T−1)

with the property that (ÃT , B̃T )
D→ (A,B), where E(ÃT ) = E(A) = 0. Then the zero- and

first-order terms of the bias are zero, and the second-order asymptotic bias term is T−1E(B).
We now state the main result on the asymptotic bias of d̂, the proof of which is given in

Appendix C. To describe the results we use Riemann’s zeta function, ζs =
∑∞

j=1 j
−s, s > 1,

and specifically

ζ2 =

∞∑
j=1

j−2 =
π2

6
' 1.6449 and ζ3 =

∞∑
j=1

j−3 ' 1.2021. (9)

Theorem 1 Let the process Xt, t = 1, . . . , T, be generated by model (1) with d0 > 1/2 and
suppose Assumptions 1 and 2 are satisfied. Then the asymptotic bias of d̂ is

−T−1[3ζ3ζ−22 +ξ(d0)ζ
−1
2 ] + o(T−1), (10)

where

ξ(d) = σ−20

∞∑
t=1

[

∞∑
n=0

πt+n(−d)(X−n − X̃−n)][

∞∑
n=0

(

t−1∑
k=1

k−1πt−k+n(−d)X−n − Dπt+n(−d)X̃−n)].

(11)
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The main bias terms in (10) are of the same order of magnitude in T , namelyO(T−1). The
first term, 3ζ3ζ

−2
2 , is fixed and comes from the higher-order (second and third) derivatives of

the likelihood and does not depend on initial values or on d0. The second term is a function
of initial values and d0 and can be made smaller by including more initial values. The bias
due to initial values is quadratic in X−n/σ0 and X̃−n/σ0.
If all initial values are observed, so that X̃−n = X−n for all n ≥ 0, then the second-order

bias is −T−13ζ3ζ−22 ' −1.3328T−1, which does not depend on initial values or on d0. Thus,
the estimator is asymptotically second-order pivotal in that case, suggesting that higher-
order asymptotic refinements may be possible via the bootstrap also in our nonstationary
setting, see Andrews, Lieberman, and Marmer (2006) for the stationary case. Furthermore,
the fixed bias term could be used for a simple bias correction by considering the estimator
d̃ = d̂+ T−13ζ3ζ

−2
2 .

The fixed bias term, 3ζ3ζ
−2
2 , is the same as the bias term derived by Lieberman and

Phillips (2004) for the estimator, d̂stat, based on the joint (unconditional) likelihood of
(X1, . . . , XT ) in the stationary case, 0 < d < 1/2. They show that the distribution function
of ζ1/22 T 1/2(d̂stat − d0) is approximated by

FT (x) = P (ζ
1/2
2 T 1/2(d̂stat − d0) ≤ x) = Φ(x) + T−1/2ζ3ζ

−3/2
2 φ(x)(2 + x2) +OP (T−1),

where Φ(x) and φ(x) denote the standard normal distribution and density functions, respec-
tively. One can derive an approximation for the bias of d̂stat to be

E(ζ
1/2
2 T 1/2(d̂stat − d0)) =

∫ ∞
0

(1− FT (x))dx−
∫ 0

−∞
FT (x)dx = −T−1/23ζ3ζ−3/22 +OP (T−1),

which shows that the second-order bias of d̂stat, derived for 0 < d0 < 1/2, is the same as the
the second-order fixed bias term of d̂ derived for d0 > 1/2 in Theorem 1.
Although the asymptotic bias of d̂ is of order O(T−1) we note that the asymptotic stan-

dard deviation of d̂ is of order O(T−1/2), see Lemma 2. That is, for testing purposes or
for calculating confidence sets for d0 the relevant quantity is in fact the bias relative to the
asymptotic standard deviation, which is given by

−T−1[3ζ3ζ−22 +ξ(d0)ζ
−1
2 ]/(Tζ2)

−1/2 = −T−1/2[3ζ3ζ−3/22 +ξ(d0)ζ
−1/2
2 ] (12)

and is of order O(T−1/2).
If we further use Assumption 3 we get the following expressions for ξ(d), see Appendix

D for the proof.

Theorem 2 Let Assumptions 2 and 3.`, ` = 0, 1, be satisfied and let ξN(d) denote ξ(d) in
(11) for a fixed N chosen in Assumption 3. For d > 1/2 + ` it holds that

ξN(d) = σ−20

∞∑
t=1

[

∞∑
n=N

πt+n(−d+ `)∆`X−n] (13)

× [

∞∑
n=0

t−1∑
k=1

k−1πt−k+n(−d+ `)∆`X−n −
N−1∑
n=0

Dπt+n(−d+ `)∆`X−n],
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which is bounded by
|ξN(d)| ≤ c(1 +N)−δ (14)

for any δ < min(d− `, 2(d− `)− 1).

The formula (13) for ` = 0 comes from inserting the choice X̃−n = X−n1(n<N) in the
expression for ξ(d), see (11). For d large it may be not be natural to choose the value zero
for X̃−n, n ≥ N, but rather choose the first observed initial value, i.e. X̃−n = X−N+1, n ≥ N ,
as for ` = 1. This corresponds to setting ∆X̃−n = 0, n ≥ N − 1, and therefore an expression
for ξN(d) is given involving ∆X−n, see (13). Note, however, that the fractional coeffi cients
are cumulated and −d is replaced by −d+ 1, so they decrease much slower and we only get
the evaluation (14) if in fact d > 1.5.
We next discuss the bias terms ξ(d) and ξN(d) in more detail under additional assump-

tions.

2.2 Further results for special cases

The expressions for ξ(d) and ξN(d) in (11) and (13), respectively, show that both functions
depend on d and on all initial values. In order to get an impression for what this dependence
is, we derive simple expressions for ξ(d) and ξN(d) in special cases or under simplifying
assumptions about the initial values.
First, when d is an integer, we find simple results for ξ(d) and ξN(d), and hence the

asymptotic bias, as follows.

Theorem 3 For ξ(d) given in (11) it holds that:

(i) For d = 1 we have

ξ(1) = σ−20 (X0 − X̃0)
∞∑
n=0

Dπ1+n(−1)X̃−n (15)

such that ξ(1) = 0 if either (i) X̃−n = 0 for all n ≥ 0 or if (ii) X̃0 = X0. In those
cases the asymptotic relative bias of d̂ is given by

−T−1/23ζ3ζ−3/22 +O(T−1) ' −1.7094T−1/2 +O(T−1).

(ii) Under Assumption 3.0 and N ≥ d = k for any integer k ≥ 1 we have that ξN(d) = 0.

Proof. From (43) we find

σ20ξ(d) =
∞∑
t=1

[

∞∑
n=0

πt+n(−d)(X−n − X̃−n)][

∞∑
n=0

t−1∑
k=1

k−1πt−k+n(−d)X−n −
∞∑
n=0

Dπt+n(−d)X̃−n]

=

∞∑
t=1

η0t(d)[η
(1)
1t (d) + η

(2)
1t (d)],

where

η
(1)
1t (d) =

∞∑
n=0

t−1∑
k=1

k−1πt−k+n(−d)X−n =
t−1∑
k=1

(t− k)−1
∞∑
n=0

πk+n(−d)X−n
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is non-zero only if t ≥ 2.
Proof of (i): For d = 1, where πt(−1) = 0 for t ≥ 2, we only get a contribution to η0t(d)

for t + n = 1. This shows that we must have t = 1, n = 0, and η01(d) = −(X0 − X̃0).
Moreover, η(1)11 (d) = 0 and η(2)11 (d) = −

∑∞
n=0Dπ1+n(−1)X̃−n.

Proof of (ii): When d = k is a positive integer πt(−d) = 0 for t ≥ k so that η0t(d) = 0
under Assumption 3 with N ≥ k.
It follows from Theorem 3 that for d0 = 1 we need one initial value and for d0 = 2 we

need two initial values, etc. Alternatively, for d0 = 1, one can, in fact, simply set X̃−n = 0
for all n ≥ 0, which gives no contribution from initial values to the second-order asymptotic
bias. Since the bias term is continuous in d0, the same is true for a (small) neighborhood of
d0 = 1.
We next assume that the initial values are constant, and derive expressions for the initial

values bias term ξN(d) given by (13) in Theorem 1. Here, Ψ(d) = D log Γ(d) denotes the
Digamma function.

Theorem 4 If X−n = C and X̃−n = 1{n<N}C for n ≥ 0, i.e. under Assumption 3.0, then
ξN(d) given in (13) is

ξN(d) =
C2

2σ20
D
∞∑
n=N

(
d− 1

n

)2
= ξ0(d)− C2

2σ20
D
N−1∑
n=1

(
d− 1

n

)2
(16)

where

ξ0(d) =
C2

σ20

Γ(2d− 1)

Γ(d)2
(Ψ(2d− 1)−Ψ(d)). (17)

Proof. Proof of (16): The expression for ξN(d) in (13) is found from (27),

ξN(d) = H01T (d) = σ−20

∞∑
t=1

η0t(d)η1t(d),

where ηmt(d) is given in (24). We therefore evaluate the deterministic term in ∆̃dXt and its
derivatives at d = d0. For t ≥ 1 we find from (4) in Lemma 1 that the deterministic term of
∆̃dXt has the expression

−∆d−d0
+ ∆d0

−Xt + ∆d
−X̃t = −

t−1∑
k=0

πk(−d+ d0)
∞∑
n=0

πt+n−k(−d0)X−n +

∞∑
n=0

πt+n(−d)X̃−n.

If X−n = C and X̃−n = 1{n<N}C for n ≥ 0, this is C times

−
t−1∑
k=0

πk(−d+ d0)

∞∑
n=t−k

πn(−d0) +

t+N−1∑
n=t

πn(−d)

=
t−1∑
k=0

πk(−d+ d0)πt−k−1(−d0 + 1) + πt+N−1(−d+ 1)− πt−1(−d+ 1) = πt+N−1(−d+ 1)
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by application of Lemma A.4(d)-(f). Therefore it holds that ηmt(d) = C(−1)mDmπt+N−1(−d+
1), such that

ξN(d) = −C
2

σ20

∞∑
t=1

πt+N−1(−d+ 1)Dπt+N−1(−d+ 1)

=
C2

2σ20
D
∞∑
t=1

πt+N−1(−d+ 1)2 =
C2

2σ20
D
∞∑
n=N

(
d− 1

n

)2
.

Proof of (17): We find from Lemma A.5 that for N = 0,

D
∞∑
n=0

(
d− 1

n

)2
= 2

Γ(2d− 1)

Γ(d)2
(Ψ(2d− 1)−Ψ(d)).

A consequence of (16) in Theorem 4 is that for constant initial values we can find ξN(d)
simply by subtracting a finite summation from ξ0(d), which is given explicitly in (17).

3 Applications
3.1 Numerical illustration

We illustrate the formulas above (under Assumption 3.0) by some numerical calculations
in order to quantify the magnitude of the relative bias, and therefore the distortion of the
quantiles (critical values). The relative bias is bT (d) = −T−1/2ζ−1/22 (3ζ3ζ

−1
2 +ξN(d)), where

ξN(d) is given in (13) and ζ2 ' 1.6449, ζ3 ' 1.2021 are given in (9). It follows from Theorem
3 that if we choose X̃−n = X−n1{0≤n<N}, then ξN(d) = 0 for d = 1, . . . , N . In these points
the relative bias is bT (d) = −T−1/23ζ3ζ−3/22 = −1.71T−1/2, which can only be made smaller
by increasing T . For example, for T = 200 this value is b200(d) = −0.12. Thus, when testing
hypotheses in these cases the relative bias distorts the relevant quantile by −0.12.
To analyze what happens in between these values, we consider the situation that all

initial values are constant, X−n = C, and take X̃−n = C1{0≤n<N}, where we can calculate
the bias term explicitly for all d by using the expression, see (16),

ξN(d) =
C2

σ20

Γ(2d− 1)

Γ(d)2
(Ψ(2d− 1)−Ψ(d))− C2

σ20

N−1∑
n=1

πn(−d+ 1)Dπn(−d+ 1).

The calculation with this value of ξN(d) is illustrated in Figure 1, which depicts the relative
bias as a function of d for T = 200, Cσ−10 = 10, and N = 0, 2, 5, 10. It is seen that for
1 ≤ d ≤ 2, the values N = 0 and N = 2 give a rather large relative bias, even though it is
equal to the fixed value −T−1/23ζ3ζ−3/22 = −0.12 (the dashed line) for d = 1 (N ≥ 0) and
d = 2 (N ≥ 2). Note also that the absolute value of the relative bias for N = 2 increases
rapidly for d > 2. For N ≥ 5 and 1 ≤ d ≤ 2, however, we get a relative bias close to the
fixed value −0.12.
Thus we see the effect, in this stylized example, of increasing the number of values set

aside for initial values, N . The absolute relative bias is decreased by increasing N thereby
forcing the bias to be −0.12 on the integer values d = 1, 2, . . . , N . A consequence of this
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Figure 1: Relative bias as a function of d with constant initial values
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Note: The relative bias bT (d) = −T−1/2ζ−1/22 (3ζ3ζ
−1
2 +ξN(d)) is displayed as a function of d

when the chosen initial values are X̃−n = X−n1(n<N) and the initial values of the process are
constant X−n = C, n ≥ 0. We choose T = 200 and Cσ−10 = 10. The dotted line indicates
the fixed bias −T−1/23ζ3ζ−3/22 = −0.12.

is that if we find, for a given value of Cσ−10 , a value of N such that at (approximately)
d = 1.1 we get a small absolute relative bias, then the relative bias remains small for all
values 1 ≤ d ≤ N . We note that this minimax procedure is conservative in the sense that
for d 6= 1.1 we could do with a smaller value of N . The few extra initial values seem a small
price to pay for the uncertainty in d. However, this calculation is only valid for the stylized
illustrative example with constant initial values. In general, the bias term ξN(d) depends on
infinitely many initial values and it is diffi cult to quantify the influence of the initial values
on the bias in the more general case.

3.2 Discussion of location and scale (non-)invariance of fractional models

Another application of our results is to the following situation. Consider the two models

∆dXt = εt, t = 1, 2, . . . , with initial values X−n, n ≥ 0, (18)

∆dXt = εt, t = 1, 2, . . . , with initial values X−n = 0, n ≥ 0. (19)

Model (18) is the model analyzed in this paper. Model (19) is the most commonly applied
model in the literature for nonstationary fractional models and has been analyzed by, e.g.,
Hualde and Robinson (2011) among many others.
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Both models (18) and (19) are clearly scale invariant. That is, the models are invariant
under multiplication by a constant in the sense that changing units of, say, a price variable,
Xt, does not change inference on d.
Both models are not, however, invariant to changes in location. Suppose, for example,

that Xt is the log of a price variable. Then changing the unit from dollars to cents gives
an additive constant of log 100, i.e. Yt = Xt + log 100. This does not change the analysis of
model (18) since ∆dYt = ∆d(Xt + log 100) = ∆dXt because ∆d1 = 0 for d > 0, so that Yt
also satisfies the equation ∆dYt = εt. The only difference is that now the initial values are
Y−n = X−n + log 100 for n ≥ 0. Model (19), however, assumes initial values are zero, but
if X−n = 0 for n ≥ 0 then for Yt the initial values are Y−n = log 100, n ≥ 0, and choosing
Ỹ−n = 0, n ≥ 0, we get a relative bias of

−T−1/2ζ−1/22 [
3ζ3
ζ2

+ (log 100)2
Γ(2d0 − 1)(Ψ(2d0 − 1)−Ψ(d0))

σ20Γ(d0)2
],

see Theorem 4.

3.3 Data example

As the final application, we consider a specific data example. The data are monthly Gallup
opinion poll data on support for the Conservative and Labour parties in the United Kingdom.
They cover the period from January 1951 to November 2000, for a total of 599 months.
The two series have been logistically transformed and centered, so that, if Yt denotes an
observation on the original series, it is mapped into log(Yt/(100− Yt)). A shorter version of
this dataset was analyzed in Byers, Davidson, and Peel (1997) and Dolado, Gonzalo, and
Mayoral (2002). In light of the discussion in Section 3.2, we consider the series centered
by their sample averages as in Byers et al. (1997) and Dolado et al. (2002), but also the
uncentered series.
Using an aggregation argument and a model of voter behavior, Byers et al. (1997) show

that aggregate opinion poll data may be best modeled using fractional integration methods.
The basic findings of Byers et al. (1997) and Dolado et al. (2002) are that the ARFIMA(0,d,0)
model, i.e. model (1), appears to fit both data series well and they obtain values of the
integration parameter d in the range of 0.6—0.8.
Suppose, for illustration, that Xt (denoting either the centered or uncentered series) is in

fact zero prior to January 1951, and that the econometrician only observes data starting in
January 1961. That is, January 1951 through December 1960 are unobserved initial values.
Following Assumption 3.0, the econometrician will then have to split the given sample of
479 observations into initial values (N) and observations used for estimation (T ), such that
N +T = 479. We can now ask the questions (i) what is the consequence in terms of relative
bias of ignoring initial values, i.e. of setting N = 0, and (ii) how sensitive is the relative bias
to the choice of N for this particular data set.
To answer these questions we apply Theorem 1, and in particular (10) and (13). We note

that ξN(d) in (13) depends only on the unobserved initial values, which in this example are
the observations from January 1951 to December 1960. To apply Theorem 1 we need values
of d0 and σ20. For both the centered and uncentered series we use d0 = 0.76 and σ0 = 0.12 for
the Conservative party series and d0 = 0.69 and σ0 = 0.13 for the Labour party series. These
values were obtained as the estimators based on the data from January 1961 conditional on
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Figure 2: Application to opinion poll data (centered series)
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Note: The top panels show (transformed) opinion poll time series (centered by the sample
average) and the bottom panels show the relative bias for the estimator of d as a function
of the number of chosen initial values, N .

all initial values back to January 1951, and were the same (to two decimal places) whether
based on centered or uncentered series.
Results are shown in Figures 2 and 3 for the centered and uncentered series, respectively.

The top panels of each figure show the (logistically transformed) opinion poll data. The
shaded areas mark the unobserved initial values January 1951 to December 1960. The
bottom panels show the relative bias1 in the estimator of d as a function of N ∈ [0, 24], and
the dashed straight line denotes the value of the fixed bias term, −(479 − N)−1/23ζ3ζ

−3/2
2 .

In Figure 2 we note that the relative bias is larger for the Conservative party series because
the last unobserved initial values are larger in absolute value than those of the Labour party
series. In particular, if one does not condition on initial values and uses N = 0, the relative
bias is −0.26 for the Conservative party series and −0.11 for the Labour party series. It is
clear from the figure that the relative bias, particularly for the Conservative party series, can
be reduced substantially and be made much closer to the fixed bias value by conditioning on
just a few initial values. The same conclusions can be drawn from Figure 3 for the Labour
party series.

1In the calculation of ξN (d), the infinite summation over t is truncated at 1000.



Initial values in nonstationary fractional models 14

Figure 3: Application to opinion poll data (uncentered series)
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Note: The top panels show (transformed) opinion poll time series (uncentered) and the
bottom panels show the relative bias for the estimator of d as a function of the number of
chosen initial values, N .

4 Conclusion
In this paper we have analyzed the effect of initial values on the asymptotic bias of the
conditional maximum likelihood estimator, d̂, of the fractional parameter, for d0 > 1/2.
This estimator is very often applied in practice, but although fractional models in principle
depend on infinitely many initial values, the role of initial values has only been studied little
in the literature.
We have shown that the asymptotic bias is of order O(T−1), but since the asymptotic

standard deviation is of order O(T−1/2), the relevant quantity for testing and for constructing
confidence sets is the relative bias, which is of order O(T−1/2) and can be substantial.
When d0 = 1 the choice X̃−n = 0 for n ≥ 0, which is commonly applied in practice, gives

no contribution from initial values to the asymptotic second-order bias. Since the bias term
is continuous in d0, the same is true for a (small) neighborhood of d0 = 1.
In three applications of our theory we have demonstrated how to apply our theoretical

results to (i) illustrate the bias numerically, (ii) discuss (non-)invariance of different fractional
models to location and scale, and (iii) an empirical data set.



Initial values in nonstationary fractional models 15

Appendix A The fractional coeffi cients
In this section we derive some useful results for the fractional coeffi cients (2) and their
derivatives. The latter are given in the following lemma.

Lemma A.1 Define the coeffi cient aj = 1{j≥1}
∑j

k=1 k
−1. The derivatives of πj(·) are

Dm log πj(u) = (−1)m+1
j−1∑
i=0

1

(i+ u)m
for u 6= 0,−1, . . . ,−j + 1 and m ≥ 1, (20)

Dπj(u)|u=−i = (−1)i
i!(j − i− 1)!

j!
for i = 0, 1, . . . j − 1 and j ≥ 2, (21)

D2πj(u)|u=−i = 2Dπj(u)|u=−i(aj−i−1 − ai) for i = 0, 1, . . . j − 1 and j ≥ 2. (22)

Proof. The result (20) follows by taking derivatives in (2) for u 6= 0,−1, . . . ,−j + 1. For
u = −i and i = 0, 1, . . . , j − 1 we first define

P (u) = u(u+ 1) . . . (u+ j − 1), Pk(u) =
P (u)

u+ k
, Pkl(u) =

P (u)

(u+ k)(u+ l)
for k 6= l.

noting that πj(u) = P (u)/j!, see (2). We then find

DP (u) =
∑

0≤k≤j−1

Pk(u) and D2P (u) =
∑

0≤k 6=l≤j−1

Pkl(u),

which we evaluate at u = −i for i = 0, 1, . . . , j − 1. However, for such i we find Pk(−i) = 0
unless k = i and Pkl(−i) = 0 unless k = i or l = i.
Thus,

DP (u)|u=−i = Pi(−i) = (−i)(−i+ 1) . . . (−1)× (1)(2) . . . (j − 1− i) = (−1)ii!(j − i− 1)!

and (21) follows because Dπj(u) = DP (u)/j!, see (2). Similarly we find

D2P (u)|u=−i =
∑
k 6=i

Pki(−i) +
∑
l 6=i

Pil(−i) = 2
∑
k 6=i

Pki(−i)

= 2
∑
k 6=i

Pi(−i)
k − i = 2Pi(−i)

∑
k 6=i

1

k − i

= 2Pi(−i)(aj−i−1 − ai),

which shows (22).
For u = 0,−1,−2, . . ., we note that πj(u) = 0 for j ≥ −u + 1, but Dmπj(u) remains

non-zero even for such values of j where πj(u) = 0.
We next present some simple results for the fractional coeffi cients and their derivatives.

Lemma A.2 (a) For m ≥ 0, j ≥ 1, and any u, it holds that

|Dmπj(u)| ≤ c(1 + log j)mju−1.

(b) For u > 0 and j →∞ it holds that

πj(u) =
1

Γ(u)
ju−1(1 + o(1)).
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Proof. Proof of (a): See JN (2010, Lemma B.3).
Proof of (b): To prove (b) we apply Stirling’s formula,

πj(u) =
Γ(u+ j)

Γ(u)Γ(j + 1)
=

1

Γ(u)
ju−1(1 + εj(u)),

where |εj(u)| → 0 as j →∞ for u > 0.

Lemma A.3 (a) For any α, β it holds that

t−1∑
n=1

nα−1(t− n)β−1 ≤ c(1 + log t)tmax(α+β−1,α−1,β−1).

(b) For α + β < 1 and β > 0 it holds that

∞∑
k=1

(k + h)α−1kβ−1(log(k + h))n ≤ chα+β−1(log h)n.

Proof. Proof of (a): See JN (2010, Lemma B.4).
Proof of (b): We first consider the summation from k = 1 to h:

h1−α−β
h∑
k=1

(k + h)α−1kβ−1(log(k + h))n = h−1
h∑
k=1

(
k

h
+ 1)α−1(

k

h
)β−1(log(h) + log(1 +

k

h
))n

≤ c(log h)nh−1
h∑
k=1

(
k

h
+ 1)α−1(

k

h
)β−1

= c(log h)n
∫ 1

0

(1 + u)α−1uβ−1du(1 + o(1)) as h→∞.

The integral is finite for β > 0 and all α because 1 ≤ 1 + u ≤ 2.
To evaluate the summation from k = h+1 to∞ we choose ε > 0 such that ε < 1−(α+β).

Then (k + h)α−1 = (k + h)−β−ε(k + h)α+β−1+ε ≤ k−β−εhα+β−1+ε and log(k + h) ≤ log(2k) ≤
c log k. It follows that

∞∑
k=h+1

(k + h)α−1kβ−1(log(k + h))n ≤ c
∞∑

k=h+1

k−β−εhα+β−1+εkβ−1(log k)n

≤ chα+β−1+ε
∞∑
k=h

k−ε−1(log k)n,

which is bounded by, see Lemma A.6, chα+β−1+εh−ε(log h)n = chα+β−1(log h)n.

Lemma A.4 Let aj = 1{j≥1}
∑j

k=1 k
−1. For any u,

(a) π0(u) = 1 and π1(u) = u,
(b) Dmπ0(u) = 0 and Dmπ1(u) = 1{m=1} for m ≥ 1,
(c) Dπj(0) = j−11{j≥1},D

2πj(0) = 2j−1aj−11{j≥2}, and |Dmπj(0)| ≤ cj−1(1+log j)m−11{j≥1}
for m ≥ 1,
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(d)
∑k

n=j D
mπn(−u) = Dmπk(−u+ 1)− Dmπj−1(−u+ 1) for m ≥ 0.

For u > 0,
(e)

∑∞
n=j D

mπn(−u) = −Dmπj−1(−u+ 1) for m ≥ 0.
For any u, v,
(f)
∑k

n=0 πn(u)πk−n(v) = πk(u+ v).

Proof. Result (a) is well known and follows trivially from (2), (b) follows by taking deriv-
atives in (a), and (c) is a consequence of (21) and (22). To prove (d) with m = 0 multiply
the identity

(
u
n

)
=
(
u−1
n

)
+
(
u−1
n−1
)
by (−1)n to get

(−1)n
(
u

n

)
= (−1)n

(
u− 1

n

)
− (−1)n−1

(
u− 1

n− 1

)
.

Summation from n = j to n = k yields a telescoping sum such that

k∑
n=j

(−1)n
(
u

n

)
= (−1)k

(
u− 1

k

)
− (−1)k−1

(
u− 1

j − 1

)
,

which in terms of the coeffi cients πn(·) gives the result. Take derivatives to find (d) with
m ≥ 1. From Lemma A.2, Dmπk(−u + 1) ≤ c(1 + log k)mk−u → 0 as k → ∞ when u > 0
which shows (e). Finally, (f) follows from the Chu-Vandermonde identity, see Askey (1975,
pp. 59-60).

Lemma A.5 For d > 1/2 it holds that

∞∑
n=0

(
d− 1

n

)2
=

Γ(2d− 1)

Γ(d)2
,

D
∞∑
n=0

(
d− 1

n

)2
= 2

Γ(2d− 1)

Γ(d)2
(Ψ(2d− 1)−Ψ(d)).

Proof. With the notation a(n) = a(a+ 1) . . . (a+ n− 1), Gauss’s Hypergeometric Theorem,
see Abramowitz and Stegun (1964, p. 556, eqn. 15.1.20), shows that

∞∑
n=0

a(n)b(n)
c(n)n!

=
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) for c > a+ b.

For a = b = −(d− 1) and c = 1, so that c− a− b = 2d− 1 > 0, it holds that

∞∑
n=0

(
d− 1

n

)2
=
∞∑
n=0

(
(d− 1)(d− 2) . . . (d− n)

n!

)2
=
∞∑
n=0

a(n)b(n)
c(n)n!

=
Γ(2d− 1)

Γ(d)2
,

with derivative 2(Ψ(2d− 1)−Ψ(d))Γ(2d− 1)/Γ(d)2.
The following summation results are special cases of Karamata’s Theorem. Because they

are well known we apply them in the remainder without special reference.
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Lemma A.6 For m ≥ 0 and c <∞,
N∑
n=1

(1 + log n)mnα ≤ c(1 + logN)mNα+1 if α > −1,

∞∑
n=N

(1 + log n)mnα ≤ c(1 + logN)mNα+1 if α < −1.

Proof. See Theorems 1.5.8 and 1.5.10, respectively, in Bingham, Goldie, and Teugels (1987).

Appendix B Asymptotic analysis of the derivatives
The analysis of (8) and hence the proof of Theorem 1 requires asymptotic results for the
first three derivatives of L̃ evaluated at the true value, d = d0. These in turn depend on the
derivatives of ∆̃dXt = ∆d

+Xt + ∆d
−X̃t for d = d0.

For t ≥ 1 we find from (4) in Lemma 1 that ∆̃dXt has the expression

∆̃dXt = ∆d−d0
+ εt −∆d−d0

+ ∆d0
−Xt + ∆d

−X̃t

=
t−1∑
k=0

πk(−d+ d0)εt−k

−
t−1∑
k=0

πk(−d+ d0)
∞∑
n=0

πt+n−k(−d0)X−n +
∞∑
n=0

πt+n(−d)X̃−n. (23)

Hence, derivatives of ∆̃dXt for d = d0 are of the form Dm∆̃d0Xt = S+mt + ηmt(d0), where the
stochastic term is S+mt defined as

Smt = (−1)m
∞∑
k=0

Dmπk(0)εt−k = S+mt + S−mt

with

S+mt = (−1)m
t−1∑
k=0

Dmπk(0)εt−k and S−mt = (−1)m
∞∑
k=t

Dmπk(0)εt−k.

The deterministic term is

ηmt(d0) = (−1)m+1[

∞∑
n=0

t−1∑
k=0

Dmπk(0)πt−k+n(−d0)X−n −
∞∑
n=0

Dmπt+n(−d0)X̃−n]. (24)

We first give the order of magnitude of the deterministic terms and product moments
containing these.

Lemma B.1 Suppose Assumptions 1-2 hold then the functions ηmt(d) satisfy

|η0t(d)| ≤ ct−d, (25)

|ηmt(d)| ≤ c(1 + log t)mt−min(1,d),m ≥ 1. (26)
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For d > 1/2 it follows that

HmnT (d) = σ−20

T∑
t=1

ηmt(d)ηnt(d)→ σ−20

∞∑
t=1

ηmt(d)ηnt(d) = Hmn(d) <∞, (27)

and

KmnT (d) = σ−20

T∑
t=1

S+mtηnt(d)
P→ σ−20

∞∑
t=1

S+mtηnt(d) = Kmn(d), (28)

where E(KmnT (d)) = E(Kmn(d)) = 0 and Kmn(d) <∞ almost surely.

Proof. Proof of (25): The expression for η0t(d) is

η0t(d) = −
∞∑
n=0

πt+n(−d)X−n +
∞∑
n=0

πt+n(−d)X̃−n = −
∞∑
n=0

πt+n(−d)(X−n − X̃−n). (29)

Using boundedness of initial values, Assumption 2, and the bound |πt+n(−d)| ≤ c(t+n)−d−1,
see Lemma A.2(a), the result follows.
Proof of (26): The remaining deterministic terms with m ≥ 1 are evaluated using

|(−1)mDmπk(0)| ≤ ck−1(1 + log k)m−11{k≥1}, see Lemma A.4(c), and we find

|ηmt(d)| ≤ c
∞∑
n=0

t−1∑
k=1

k−1(1 + log k)m−1(t− k + n)−d−1 + c
∞∑
n=0

(1 + log(t+ n))m(n+ t)−d−1

≤ c[(1 + log t)m−1
t−1∑
k=1

k−1(t− k)−d + (1 + log t)mt−d]

≤ c(1 + log t)m(t−min(1,d) + t−d) ≤ c(1 + log t)mt−min(1,d).

We have used the inequality, see Lemma A.3,
t−1∑
k=1

k−1(t− k)−d ≤ c(1 + log t)tmax(−1,−d,−d) ≤ c(1 + log t)t−min(1,d).

Proof of (27): From (25) and (26) we find |ηmt(d)ηnt(d)| ≤ c(1 + log t)m+nt−2min(1,d) so
that

∑∞
t=1 |ηmt(d)ηnt(d)| <∞ because 2 min(1, d) > 1 for d > 1/2.

Proof of (28): We have
∞∑
t=T

S+mtηnt(d) =
∞∑
t=T

ηnt(d)(−1)m+1
t−1∑
k=1

Dmπt−k(0)εk =
∞∑
k=1

[
∞∑

t=max(T,k+1)

ηnt(d)(−1)m+1Dmπt−k(0)]εk.

For some small δ > 0 to be chosen subsequently, we use the evaluations |ηnt(d)| ≤
ct−min(1,d)+δ, |Dmπt−k(0)| ≤ c(t − k)−1+δ, and t−min(1,d)+δ = (t − k + k)−min(1,d)+δ ≤ (t −
k)−2δk−min(1,d)+3δ. Then

V ar(

∞∑
t=T

S+mtηnt(d)) ≤ c

∞∑
k=1

[

∞∑
t=max(T,k+1)

t−min(1,d)+δ(t− k)−1+δ]2

≤ c
∞∑
k=1

k−2min(1,d)+6δ[
∞∑

t=max(T,k+1)

(t− k)−1−δ]2.
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For k = 1, . . . , T − 1 we get
∑∞

t=T (t− k)−1−δ ≤ c(T − k)−δ and

c
T−1∑
k=1

k−2min(1,d)+6δ(T − k)−δ ≤ c(1 + log T )Tmax(−δ,−2min(1,d)+6δ,−2min(1,d)+5δ+1) → 0

if 5δ < 2 min(1, d) − 1, see Lemma A.3. For k ≥ T we find
∑∞

t=k+1(t − k)−1−δ ≤ c and

then
∑∞

k=T k
−2min(1,d)+6δ → 0 for 6δ < 2 min(1, d) − 1. This shows that

∑T
t=1 S

+
mtηnt(d)

P→∑∞
t=1 S

+
mtηnt(d).

We next define, for m,n = 0, 1, 2, 3,m + n ≤ 3, the product moments of the stochastic
terms, S+mt, as

M+
mnT = σ−20 T−1/2

T∑
t=1

(S+mtS
+
nt − E(S+mtS

+
nt)), (30)

as well as the product moments derived from the stationary processes,

MmnT = σ−20 T−1/2
T∑
t=1

(SmtSnt − E(SmtSnt)).

The next two lemmas give their asymptotic behavior, where we note that

E(S+0tS
+
mt) = E(S0tSmt) = 0 for m ≥ 1. (31)

Lemma B.2 Suppose Assumption 1 holds. Then for ζ2 =
∑∞

j=1 j
−2 = π2

6
' 1.6449 and

ζ3 =
∑∞

j=1 j
−3 ' 1.2021, see (9),

E(M2
01T ) = σ−20 T−1

T∑
t=1

E(S21t) = ζ2, (32)

E(M01TM02T ) = σ−40 T−1
T∑

s,t=1

E(S0tS1tS0sS2s) = σ−20 T−1
T∑
t=1

E(S1tS2t) = −2ζ3, (33)

E(M01TM11T ) = σ−40 T−1
T∑

s,t=1

E(S0tS1tS
2
1s) = −4ζ3. (34)

Proof. Proof of (32): From S0t = εt, S1t = −
∑∞

k=1 k
−1εt−k, and (31) we find

E(M2
01T ) = σ−40 E[T−1/2

T∑
t=1

εt

∞∑
k=1

k−1εt−k]
2 = σ−20 T−1

T∑
t=1

E[

∞∑
k=1

k−1εt−k]
2 =

∞∑
k=1

k−2 = ζ2.

Proof of (33): We find using the expressions for S0t, S1t, and S2t = 2
∑∞

j=2 j
−1aj−1εt−j,

aj = 1{j≥1}
∑j

k=1 k
−1, together with (31) that

E(M01TM02T ) = −2σ−40 T−1E[

T∑
t=1

εt

∞∑
k=1

k−1εt−k][

T∑
s=1

εs

∞∑
j=2

(j−1aj−1)εs−j] = σ−20 T−1
T∑
t=1

E(S1tS2t)
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and

σ−20 T−1
T∑
t=1

E(S1tS2t) = −2σ−20 T−1
T∑
t=1

E[

∞∑
k=1

k−1εt−k

∞∑
j=2

(j−1aj−1)εt−j]

= −2T−1
T∑
t=1

∞∑
j=2

j−2
j−1∑
k=1

k−1 = −2
∞∑
j=2

j−2
j−1∑
k=1

k−1 = −2κ3 (35)

for κ3 =
∑∞

j=2 j
−2∑j−1

k=1 k
−1. We thus need to show that κ3 = ζ3.

Let f(λ) = log(1 − eiλ) = 1
2
c(λ) + iθ(λ), where i =

√
−1 is the imaginary unit, c(λ) =

log(2(1− cos(λ)), θ(λ) = arg(1− eiλ) = −(π−λ)/2 for 0 < λ < π, and θ(−λ) = −θ(λ). The
transfer function of Smt is Dm(1 − eiλ)d−d0|d=d0 = f(λ)m, so that the cross spectral density
between Smt and Snt is f(λ)mf(−λ)n and E(SmtSnt) =

σ20
2π

∫ π
−π f(λ)mf(−λ)ndλ. Because

c(λ) is symmetric around zero and θ(λ) is anti-symmetric around zero, i.e. θ(−λ) = −θ(λ),
it follows that

c(λ)3 = (f(λ) + f(−λ))3 = f(λ)3 + 3f(λ)2f(−λ) + 3f(λ)f(−λ)2 + f(−λ)3.

Noting that the transfer function of S0t = εt is f(λ)0 = 1 and integrating both sides we find

σ20
2π

∫ π

−π
c(λ)3dλ = E(S3tS0t) + 3E(S2tS1t) + 3E(S1tS2t) + E(S0tS3t).

The left-hand side is given as −12σ20ζ3 in Lieberman and Phillips (2004, p. 478) and the
right-hand side is −12σ20κ3 from (31) and (35), which proves the result.
Proof of (34): Next we find, using the expressions for Smt and (31) that

E(M01TM11T ) = σ−40 T−1
T∑

s,t=1

E(S0tS1tS
2
1s)

= −T−1
T∑

s,t=1

E[εt

t−1∑
k=−∞

(t− k)−1εk

s−1∑
j=−∞

(s− j)−1εj
s−1∑
i=−∞

(s− i)−1εi].

The only contribution comes for t = j > k = i or t = i > k = j and therefore t < s.
These two contributions are equal, so we find, using s− k = s− t+ t− k,

2T−1
T∑
t=1

T∑
s=t+1

t−1∑
k=−∞

(t−k)−1(s−t)−1(s−k)−1 = 2T−1
T∑
t=1

T∑
s=t+1

t−1∑
k=−∞

[(t−k)−1+(s−t)−1](s−k)−2.

Next we introduce u = s− k [≥ 2] and v = t− k [1 ≤ v < u] and find

2
∞∑
u=2

u−1∑
v=1

[v−1 + (u− v)−1]u−2 = 4
∞∑
u=2

u−2
u−1∑
v=1

v−1 = 4κ3 = 4ζ3.

This proves (34) and completes the proof of Lemma B.2.
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Lemma B.3 Suppose Assumption 1 holds. Then, for T →∞, it holds that {MmnT}0≤m,n≤3
are jointly asymptotically normal with mean zero, and some variances and covariances can
be calculated from (32), (33), and (34) in Lemma B.2. It follows that the same holds for
{M+

mnT}0≤m,n≤3 with the same variances and covariances.

Proof. Proof for {MmnT}: We apply a result by Giraitis and Taqqu (1998) on limit distri-
butions of quadratic forms of linear processes. We define the cross covariance function

rmn(t) = E(Sm0Snt) = σ20(−1)m+n
∞∑
k=0

Dmπk(0)Dnπt+k(0)

and find r00(t) = σ201{t=0}, rm0(t) = σ20(−1)mDmπ−t(0)1{t≤−1}, and r0n(t) = σ20(−1)nDnπt(0).
For m,n ≥ 1 we find the following evaluation for a small δ > 0,

|rmn(t)| ≤ c
∞∑
k=1

(1 + log(t+ k))m−1(1 + log k)n−1(t+ k)−1k−1

≤ c
∞∑
k=1

(t+ k)−1+δk−1+δ ≤ ct−1+3δ,

using the bound (t+ k)−1+δ ≤ k−2δt−1+3δ. Thus
∑∞

t=−∞ rmn(t)2 <∞, and joint asymptotic
normality of {MmnT}0≤m,n≤3 then follows from Theorem 5.1 of Giraitis and Taqqu (1998).
The asymptotic variances and covariances can be calculated as in (32), (33), and (34) in
Lemma B.2.
Proof for {M+

mnT}: We show that E(MmnT −M+
mnT )2 → 0. We find

MmnT−M+
mnT = σ−20 T−1/2

T∑
t=1

(S+mtS
−
nt+S

−
mtS

+
nt+S

−
mtS

−
nt−E(S+mtS

−
nt+S

−
mtS

+
nt+S

−
mtS

−
nt)), (36)

and show that the expectation term converges to zero and that each of the stochastic terms
has a variance tending to zero.
Proof of T−1/2

∑T
t=1E(S+mtS

−
nt + S−mtS

+
nt + S−mtS

−
nt) → 0: The first two terms are zero

because S+mt and S
−
nt are independent. For the last term we find using Lemma A.4(c) that

|E(S−mtS
−
nt)| = σ20

∞∑
k=t

|Dmπk(0)Dnπk(0)| ≤ c

∞∑
k=t

(1 + log k)m+nk−2 ≤ c(1 + log t)m+nt−1

so that

T−1/2
T∑
t=1

E(S−mtS
−
nt) ≤ cT−1/2(1 + log T )m+n+1 → 0. (37)

Proof of V ar(T−1/2
∑T

t=1 S
+
mtS

−
nt)→ 0: The first two terms of (36) are handled the same

way. We find because (S+mt, S
+
ns) is independent of (S−mt, S

−
ns) that

V ar(T−1/2
T∑
t=1

S+mtS
−
nt) = T−1

T∑
s,t=1

E(S+mtS
−
ntS

+
msS

−
ns) = T−1

T∑
s,t=1

E(S+mtS
+
ms)E(S−ntS

−
ns).
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Then replacing the log factors by a small power, δ > 0, we find for |Dmπt−i(0)| ≤ c(t −
i)−1(1 + log(t− i))m ≤ c(t− i)−1+δ that

|E(S+mtS
+
ns)| = |E(

t−1∑
i=1

Dmπt−i(0)εi

s−1∑
j=1

Dnπs−j(0)εj)| = σ20

min(s,t)−1∑
i=1

|Dmπt−i(0)Dnπs−i(0)|

≤ c

min(s,t)−1∑
i=1

(t− i)−1+δ(s− i)−1+δ.

Now take s > t and evaluate (s− i)−1+δ = (s− t+ t− i)−1+δ ≤ (s− t)−1+3δ(t− i)−2δ and

|E(S+mtS
+
ns)| ≤ c(s− t)−1+3δ

t−1∑
i=1

(t− i)−1−δ ≤ c(s− t)−1+3δ.

Similarly for

E(S−ntS
−
ns) = E(

0∑
i=−∞

Dmπt−i(0)εi

0∑
j=−∞

Dnπs−j(0)εj) = σ20

0∑
i=−∞

Dmπt−i(0)Dnπs−i(0)

we find

|E(S−ntS
−
ns)| ≤ c

0∑
i=−∞

(t− i)−1+δ(s− i)−1+δ = c
∞∑
i=0

(t+ i)−1+δ(s+ i)−1+δ

≤ c(s− t)−1+3δ
∞∑
i=0

(t+ i)−1−δ ≤ c(s− t)−1+3δt−δ.

Finally, we can evaluate the variance as

V ar(T−1/2
T∑
t=1

S+mtS
−
nt) ≤ cT−1

∑
1≤t<s≤T

(s− t)−1+3δt−δ(s− t)−1+3δ

= cT−1
T−1∑
h=1

h−2+6δ
T−h∑
t=1

t−δ ≤ cT−1T 1−δ → 0.

Proof of V ar(T−1/2
∑T

t=1 S
−
mtS

−
nt)→ 0: The last term of (36) has variance

V ar(T−1/2
T∑
t=1

S−mtS
−
nt) = T−1E([

T∑
t=1

S−mtS
−
nt]
2)− T−1[

T∑
t=1

E(S−mtS
−
nt)]

2

and the first term is

T−1
T∑

s,t=1

E(S−mtS
−
ntS
−
msS

−
ns)

= T−1
T∑

s,t=1

0∑
i,j,k,p=−∞

E(Dmπt−i(0)εiD
nπt−j(0)εjD

mπs−k(0)εkD
nπs−p(0)εp).
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There are contributions from E(εiεjεkεp) in four cases which we treat in turn.
Case 1, i = j 6= k = p: This gives the expectation squared, T−1[

∑T
t=1E(S−mtS

−
nt)]

2, which
is subtracted to form the variance.
Cases 2 and 3, i = k 6= j = p and i = p 6= j = k: These are treated the same way. We

find for Case 2 the contribution

A1 ≤ cT−1
T∑

s,t=1

∞∑
i=0

(1 + log(t+ i))m(1 + log(s+ i))m(t+ i)−1(s+ i)−1

×
∞∑
j=0

(1 + log(t+ j))n(1 + log(s+ j))n(s+ j)−1(t+ j)−1

≤ cT−1
T∑

s,t=1

[

∞∑
i=0

(t+ i)−1+δ(s+ i)−1+δ]2 ≤ cT−1
∑

1≤t<s≤T
[
∞∑
i=0

(t+ i)−1+δ(s+ i)−1+δ]2.

We evaluate (s+ i)−1+δ = (s− t+ t+ i)−1+δ ≤ (s− t)−1+3δ(t+ i)−2δ so that
∞∑
i=0

(t+ i)−1+δ(s+ i)−1+δ ≤
∞∑
i=0

(s− t)−1+3δ(t+ i)−1−δ ≤ (s− t)−1+3δt−δ

and hence

A1 ≤ cT−1
T∑

1≤t<s≤T
(s− t)−2+6δt−2δ = cT−1

T−1∑
h=1

h−2+6δ
T−h∑
t=1

t−2δ ≤ cT−1T 1−2δ → 0.

Case 4, i = j = p = k: This gives in the same way the bound

T−1
T∑

s,t=1

∞∑
i=0

(t+ i)−2+δ(s+ i)−2+δ ≤ cT−1
∞∑
i=0

[
T∑
t=1

(t+ i)−2−δ]2 ≤ cT−1
∞∑
i=0

i−2−2δ → 0.

We now apply the previous Lemmas B.1, B.2, and B.3 and find asymptotic results for
the derivatives DmL̃(d0).

Lemma B.4 Let the process Xt, t = 1, . . . , T, be generated by model (1) and suppose As-
sumptions 1-2 are satisfied. Then the derivatives satisfy

T−1/2DL̃(d0) = −M+
01T − T−1/2(H01(d0) +K01(d0) +K10(d0)) + oP (T−1/2), (38)

T−1D2L̃(d0) = −ζ2 − T−1/2(M+
11T +M+

02T ) +OP (T−1(log T )), (39)

T−1D3L̃(d0) = 6ζ3 +OP (T−1/2). (40)

Proof. Proof of (38): We find using Lemma B.1 that HmnT (d0) = Hmn(d0) + o(1) and
KmnT (d0) = Kmn(d0) + oP (1), so that

T−1/2DL̃(d0) = −T−1/2σ−20
T∑
t=1

(S+0t + η0t(d0))(S
+
1t + η1t(d0))

= −M+
01T − T−1/2(H01T (d0) +K01T (d0) +K10T (d0))

= −M+
01T − T−1/2(H01(d0) +K01(d0) +K10(d0)) + oP (T−1/2).
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Proof of (39): We find

T−1D2L̃(d0) = −σ−20 T−1
T∑
t=1

[(D∆̃d0Xt)
2 + (∆̃d0Xt)(D

2∆̃d0Xt)]

= −σ−20 T−1
T∑
t=1

(S+1t + η1t(d0))
2 − σ−20 T−1

T∑
t=1

(S+0t + η0t(d0))(S
+
2t + η2t(d0))

= −T−1/2M+
11T − σ−20 T−1

T∑
t=1

E(S+1t)
2 − T−1/2M+

02T

− T−1(H11T (d0) + 2K11T (d0) +K02T (d0) +K20T (d0) +H02T (d0)).

Again using Lemma B.1 it holds that HmnT (d0) = O(1) and KmnT (d0) = OP (1) such that

T−1D2L̃(d0) = −σ−20 T−1
T∑
t=1

E(S+1t)
2 − T−1/2(M+

11T +M+
02T ) +OP (T−1)

= −ζ2 − T−1/2(M+
11T +M+

02T ) +OP (T−1(log T ))

using also (32) and (37).
Proof of (40): We analyze the third derivative similarly,

T−1D3L̃(d0) = −σ−20 T−1
T∑
t=1

[3(D∆̃d0Xt)(D
2∆̃d0Xt) + (∆̃d0Xt)(D

3∆̃d0Xt)]

= −3σ−20 T−1
T∑
t=1

(S+1t + η1t(d0))(S
+
2t + η2t(d0))− σ−20 T−1

T∑
t=1

(S+0t + η0t(d0))(S
+
3t + η3t(d0))

= −3T−1/2M+
12T − 3σ−20 T−1

T∑
t=1

E(S+1tS
+
2t)− T−1/2M+

03T +OP (T−1)

= 6ζ3 +OP (T−1/2),

where the second-to-last equality uses Lemma B.1 and the last equality uses Lemmas B.2
and B.3, (33), and (37).

Appendix C Proof of Theorem 1

First we note that, because |d∗ − d0| ≤ |d̂ − d0|
P→ 0 and the product moments in (30) are

tight (by Lemma C.4 of JN (2010)), we can apply JN (2010, Lemma A.3) to conclude that

D3L̃(d∗) = D3L̃(d0) + oP (1). (41)

Using this result and Lemma B.4 we can approximate the second term on the right-hand
side of (8) by replacing T−1/2DL̃(d0) by −M+

01T , T
−1D2L̃(d0) by −ζ2, and T−1D3L̃(d0) by

6ζ3. Thus,

−1

2
(
T−1/2DL̃(d0)

T−1D2L̃(d0)
)2
T−1D3L̃(d0)

T−1D2L̃(d0)
= (M+

01T )2
3ζ3
ζ32

+ oP (1).
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In the first term on the right-hand side of (8) we use 1/(1 + z) = 1− z+O(z2) to obtain
the expansion

1

T−1D2L̃(d0)
=

1

−ζ2
− T−1/2T

1/2(T−1D2L̃(d0) + ζ2)

ζ22
+OP (T−1).

We next evaluate −T−1/2DL̃(d0)/(T
−1D2L̃(d0)) using this expansion together with the ex-

pression (38) for T−1/2DL̃(d0), and find that it equals

T−1/2DL̃(d0)

ζ2
+ T−1/2

T−1/2DL̃(d0)T
1/2(T−1D2L̃(d0) + ζ2)

ζ22
+OP (T−1)

=
−M+

01T

ζ2
− T−1/2H01(d0) +K01(d0) +K10(d0)

ζ2
+ T−1/2

M+
01T (M+

02T +M+
11T )

ζ22
+ oP (T−1/2).

This gives the expansion

d̂− d = T−1/2ÃT + T−1B̃T + oP (T−1), (42)

ÃT = −M
+
01T

ζ2
,

B̃T = −H01(d0)

ζ2
− K01(d0) +K10(d0)

ζ2
+
M+
01T (M+

02T +M+
11T )

ζ22
+ (M+

01T )2
3ζ3
ζ32
.

The expectation of ÃT and its limit in distribution is zero, see Lemma B.3, and it therefore
does not contribute to the asymptotic bias. The first term in B̃T is deterministic and its
contribution to the bias is simply

−ξ(d0)
ζ2

= −H01(d0)

ζ2
= −σ

2
0

ζ2

T∑
t=1

η0t(d0)η1t(d0), (43)

see Lemma B.1. Both K01(d0) and K10(d0) are mean zero random variables and do not
contribute to the bias. The termsM+

01TM
+
02T andM

+
01TM

+
11T both converge in distribution by

Lemma B.3, and the expectations of the limit distributions are −2ζ3 and −4ζ3, respectively,
see (33) and (34) of Lemma B.2. Hence, the contribution from the third term is −6ζ3/ζ

2
2 .

For the last term in B̃T we find the limit in distribution,

(M+
01T )2

3ζ3
ζ32

D→ Z201
3ζ3
ζ22
,

where Z01 ∼ N(0, 1), see Lemma B.3 and (32), and the expectation of the limit is 3ζ3/ζ
2
2 .

Appendix D Proof of Theorem 2

Proof of (13) with ` = 0: Under Assumption 3.0, where X̃−n = X−n, n < N, and X̃−n =
0, n ≥ N, and d > 1/2, we find that (11) reduces to the expression for ξN(d) for ` = 0.
Proof of (13) with ` = 1: Next consider Assumption 3.1, where X̃0 = X0, ∆X̃−n =

∆X−n1{n<N}, and d > 3/2. The expression (43) shows that ξN(d) = σ−20
∑∞

t=1 η0t(d)η1t(d),
and we discuss η0t(d) and η1t(d) separately.
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We apply the well known Beveridge-Nelson expansion,

A(z) =

∞∑
n=0

Anz
n = A+ (1− z)

∞∑
n=0

A∗nz
n,

where
∑∞

n=0An = A and A∗n = −
∑∞

m=n+1Am, n = 0, 1, 2, . . . . For η0t(d) given in (29) we
find

η0t(d) =

∞∑
n=0

πt+n(−d)(X−n − X̃−n) = A(X0 − X̃0) +
∞∑
n=0

A∗n∆(X−n − X̃−n), (44)

where A =
∑∞

n=0 πt+n(−d) = −πt−1(−d + 1) and A∗n = −
∑∞

m=n+1 πt+m(−d) = πt+n(−d +

1), n = 0, 1, 2, . . . ., see Lemma A.4(e). If X0 = X̃0 and ∆X̃−n = ∆X−n1{n<N}, we get

η0t(d) =
∞∑
n=N

πt+n(−d+ 1)∆X−n.

The expression for η1t(d) is found from (24),

η1t(d) =
t−1∑
k=0

Dπk(d)|d=0
∞∑
n=0

πt−k+n(−d)X−n −
∞∑
n=0

Dπt+n(−d)X̃−n.

The same analysis, see (44), implies that this equals

η1t(d) =
t−1∑
k=0

Dπk(d)|d=0[−πt−k−1(−d+ 1)X0 +
∞∑
n=0

πt−k+n(−d+ 1)∆X−n]

+ Dπt−1(−d+ 1)X̃0 −
∞∑
n=0

Dπt−1+n(−d+ 1)∆X̃−n

= −Dπt−1(−d+ 1)X0 +
t−1∑
k=0

Dπk(d)|d=0
∞∑
n=0

πt−k+n(−d+ 1)∆X−n

+ Dπt−1(−d+ 1)X̃0 −
∞∑
n=0

Dπt−1+n(−d+ 1)∆X̃−n,

where the second equality uses
∑t−1

k=0Dπk(d)|d=0πt−k−1(−d+1) = Dπt−1(−d+1), see Lemma
A.4(f). If X0 = X̃0 and ∆X̃−n = ∆X−n1{n<N} we thus find

η1t(d) =
t−1∑
k=0

Dπk(0)
∞∑
n=0

πt−k+n(−d+ 1)∆X−n −
N−1∑
n=0

Dπt−1+n(−d+ 1)∆X−n,

which gives the expression (13) for ` = 1, see Lemma A.4(c).
Proof of (14): We define d` = d− ` and evaluate ξN(d) = σ−20

∑∞
t=1 η0t(d`)η1t(d`) by first

evaluating

|η0t(d`)| = |
∞∑
n=N

πt+n(−d`)∆`(X−n − X̃−n)| ≤ c

∞∑
n=N

(t+ n)−d`−1 ≤ c(t+N)−d` (45)
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using Assumptions 2 and 3 and Lemma A.2(a). Applying this bound and (26) in Lemma
B.1 we find that ξN(d) is bounded as

|ξN(d)| ≤ σ−20

∞∑
t=1

|η0t(d`)η1t(d`)| ≤ c
∞∑
t=1

(t+N)−d`(1 + log t)t−min(1,d`).

From the relation (t+N)−d` ≤ tmin(1,d`)−1−ε(1+N)−d`+1+ε−min(1,d`) for 0 < ε < min(d`, 2d`−1),
we find the bound

c(1 +N)−min(d`,2d`−1)+ε
∞∑
t=1

(1 + log t)t−1−ε ≤ c(1 +N)−δ

with δ = min(d`, 2d` − 1)− ε, which proves (14) for ` = 0, 1.
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