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Abstract

It is well established that the shocks driving many key macro-economic and financial vari-

ables display time-varying volatility. In this paper we consider estimation and hypothesis

testing on the coefficients of the co-integrating relations and the adjustment coefficients in

vector autoregressions driven by both conditional and unconditional heteroskedasticity of a

quite general and unknown form in the shocks. We show that the conventional results in

Johansen (1996) for the maximum likelihood estimators and associated likelihood ratio tests

derived under homoskedasticity do not in general hold in the presence of heteroskedasticity.

As a consequence, standard confidence intervals and tests of hypothesis on these coefficients

are potentially unreliable. Solutions to this inference problem based on Wald tests (using

a “sandwich” estimator of the variance matrix) and on the use of the wild bootstrap are

discussed. These do not require the practitioner to specify a parametric model for volatility,

or to assume that the pattern of volatility is common to, or independent across, the vector

of series under analysis. We formally establish the conditions under which these methods

are asymptotically valid. A Monte Carlo simulation study demonstrates that significant

improvements in finite sample size can be obtained by the bootstrap over the corresponding

asymptotic tests in both heteroskedastic and homoskedastic environments. An application

to the term structure of interest rates in the US illustrates the difference between standard

and bootstrap inferences regarding hypotheses on the co-integrating vectors and adjustment

coefficients.
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1 Introduction

In this paper we focus on the problem of conducting inference (estimation and hypothesis

testing) on the coefficients of the co-integrating relations and associated adjustment parameters,

based around the likelihood-based methods of Johansen (1996), in vector autoregressive time

series which display time-varying behaviour in the variance of the driving shocks. We allow

for both unconditional heteroskedasticity (often referred to as non-stationary volatility in the

literature) and conditional heteroskedasticity in our analysis.

Discussing the inappropriateness of the assumption of (conditional) homoskedasticity inher-

ent in much applied econometric modelling, Gonçalves and Kilian (2004, p. 92) argue that “...

the failure of the independent and identically distributed (i.i.d.) assumption is well-documented

in empirical finance ... many monthly macroeconomic variables also exhibit evidence of con-

ditional heteroskedasticity”. A large body of recent applied work has grown suggesting that

the assumption of constant unconditional volatility is also at odds with what is observed in

the data, with a general decline in the unconditional volatility of the shocks driving macroe-

conomic series in the twenty years or so leading up to the recent financial crisis, the so-called

“Great Moderation”, commonly observed; see, for example, inter alia, Kim and Nelson (1999),

McConnell and Perez Quiros (2000), Sensier and van Dijk (2004), and references therein.

These empirical findings have helped stimulate research into the impact of time-varying con-

ditional and unconditional volatility on standard time series methods. Of most relevance to this

paper, Cavaliere, Rahbek and Taylor (2010b) analyse the impact of non-stationary volatility in

the innovation process driving a co-integrated vector autoregressive (VAR) model on the the

conventional co-integrating rank test statistics of Johansen (1996). They demonstrate that the

asymptotic null distributions of these pseudo likelihood ratio (PLR) statistics, which assume

that the innovations are i.i.d. and Gaussian, are non-pivotal in the presence of unconditional

heteroskedasticity. Cavaliere, Rahbek and Taylor (2014) [CRT] show that wild bootstrap im-

plementations of the PLR statistics are, however, asymptotically valid.1 Cavaliere, Rahbek and

Taylor (2010a) provide a separate treatment for the case where the shocks are conditionally

heteroskedastic but unconditionally homoskedastic. Here they show that the standard PLR

tests (based on asymptotic critical values) are asymptotically valid, but that the corresponding

wild bootstrap tests can deliver considerable finite sample improvements.

In this paper we focus attention on inference on the long run and adjustment coefficients in

the co-integrated VAR model (β and α, respectively, in standard notation), rather than on the

co-integration rank. In doing so we make two distinct contributions to the literature.

1The algorithm proposed in CRT generates bootstrap samples using estimates all of which are obtained under

the rank restriction imposed by the null, as is also done in Cavaliere, Rahbek and Taylor (2012), who use an

i.i.d., rather than wild, re-sampling scheme. Cavaliere, Rahbek and Taylor (2010a,b) also propose an alternative

algorithm, along the lines of that considered in Swensen (2006) using restricted estimates only for the long run

parameters of the model. Cavaliere, Rahbek and Taylor (2012) and CRT demonstrate that the algorithms they

propose are preferable to those proposed in Cavaliere, Rahbek and Taylor (2010a,b).
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Utilising a very general set-up which combines the assumptions of Cavaliere, Rahbek and

Taylor (2010a) and Cavaliere, Rahbek and Taylor (2010b) into a unified framework, our first

contribution is to examine the impact of time-varying volatility on the large sample properties of

the standard likelihood-based methods of estimation and hypothesis testing on the coefficients

of the long run relations and the associated adjustment coefficients detailed in Johansen (1996).

In particular, we analyse the pseudo maximum likelihood (PML) estimates of these parameters

and the associated PLR test for linear restrictions on these parameters, both derived under

the assumption of an i.i.d. Gaussian pseudo-likelihood. We also analyse the corresponding

Wald statistic, based around a PML (“sandwich”) variance matrix estimator. We demonstrate

that although the PML estimates are consistent, standard confidence intervals and PLR test

statistics based on the PML estimates of α and β will not be reliable in general, their form

depending on nuisance parameters arising from any heteroskedasticity in the shocks. Where

the shocks are unconditionally homoskedastic, however, inference on β alone is shown to be

asymptotically pivotal. For this to hold for the PLR tests involving α, volatility clustering

must also be absent from the shocks. We show that asymptotically robust inference can be

achieved on α, regardless of any heteroskedasticity present, by using the Wald statistic. This

also holds when using the Wald statistic to test hypotheses involving β, provided the shocks

are unconditionally homoskedastic, but in general is not true when non-stationary volatility

is present. These results complement those given in Hansen (1992a) for the case of a single

equation error-correction model (as in Engle and Granger, 1987), driven by an error term whose

volatility follows a first-order integrated (I(1)) process.

Our second contribution is to develop wild bootstrap implementations of the standard PLR

and Wald tests. We derive the conditions under which the wild bootstrap tests can replicate

the first order limiting null distributions of the corresponding standard test statistics. In such

cases asymptotically valid bootstrap inference can be performed in the presence of time-varying

volatility using the wild bootstrap versions of these tests. For the bootstrap PLR tests involv-

ing α this requires the assumption of a further moment condition and the assumption of the

absence of any leverage effects. For the PLR tests involving only β neither of these additional

assumptions is required, while for the Wald tests, the additional leverage assumption is also

not required.

The remainder of the paper is organised as follows. Section 2 defines the heteroskedastic

model, discussing in detail the type of time-varying volatility that we consider. We then char-

acterise the asymptotic behaviour of the common trends in the process. Next, we introduce

a class of hypotheses on the co-integrating vectors and error correction coefficients. Section 3

derives the asymptotic null distributions of the PLR and Wald test statistics for the class of hy-

potheses we consider. The wild bootstrap approach, based on a sieve-type procedure using the

PML coefficient matrix estimates from the co-integrated VAR model, is outlined in Section 4.

Here the conditions under which the wild bootstrap tests deliver asymptotically valid inference

are also detailed. In Section 5 we use Monte Carlo simulation evidence to compare the small
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sample size properties of the standard (asymptotic) tests and their bootstrap analogues for a

variety of heteroskedastic co-integrated VAR models. An empirical application of the proposed

methods to the term structure of interest rates in the US is presented in Section 6. Section 7

concludes. All proofs are contained in the Appendix.

In the following ‘
w→’ denotes weak convergence and ‘

p→’ convergence in probability; I(·)
denotes the indicator function and ‘x := y’ (‘x =: y’) indicates that x is defined by y (y is

defined by x); b·c denotes the integer part of its argument. The notation CRm×n [0, 1] is used

to denote the space of m × n matrices of continuous functions on [0, 1]; DRm×n [0, 1] denotes

the space of m × n matrices of càdlàg functions on [0, 1], equipped with the Skorohod metric.

The space spanned by the columns of any m× n matrix A is denoted as col(A); if A is of full

column rank n < m, then A⊥ denotes an m × (m− n) matrix of full column rank satisfying

A′⊥A = 0. For any square matrix, A, |A| is used to denote the determinant of A, ‖A‖ the norm

‖A‖2 := tr {A′A}, and ρ (A) its spectral radius (that is, the maximal modulus of the eigenvalues

of A). For any vector, x, ‖x‖ denotes the usual Euclidean norm, ‖x‖ := (x′x)1/2. Finally, ⊗
denotes the Kronecker product.

2 The Heteroskedastic VAR Model and Hypotheses

We consider the following VAR(k) model in error-correction format:

∆Xt = αβ′Xt−1 +

k−1∑
j=1

Γj∆Xt−j + αρ′1D1t + µ2D2t + εt, t = 1, . . . , T, (1)

where Xt is a p-variate vector process, with initial values (X1−k, . . . , X0), which are taken to be

fixed in the statistical analysis, and D1t and D2t are vectors of deterministic terms, such as a

constant or linear trend, of dimensions d1 and d2, respectively. The disturbance εt is assumed

to be a p-variate vector martingale difference sequence relative to some filtration Ft, with finite

and positive definite conditional variance matrix. Further conditions on εt are discussed below.

The parameter matrices α and β, which are our key focus in this paper, are dimension p × r,
with 0 < r < p, and {Γj}k−1

j=1 are p × p lag coefficient matrices. The co-integration rank, r,

is assumed to be known in what follows; in practice this would first be determined using the

wild bootstrap co-integration rank tests of CRT. The parameter matrices ρ1 and µ2 are of

dimensions d1× r and p× d2; note that D1t enters the model through the error correction term

α(β′Xt−1 + ρ′1D1t) only, whereas D2t appears unrestrictedly. The usual cases of interest which

we consider in this paper are: (i) Dt = 1, dt = 0 (restricted constant), and (ii) Dt = t, dt = 1

(restricted linear trend); see Johansen (1992).

We assume that the process in (1) satisfies the following condition (referred to as the ‘I(1, r)

condition’ hereafter):

Assumption 1. (a) the characteristic equation associated with (1), i.e. |A (z) | = 0 with

A (z) := (1− z) Ip − αβ′z −
∑k−1

j=1 Γjz (1− z), has p − r roots equal to 1 and all other roots

4



outside the unit circle, and (b) α and β have full column rank r.

An implication of Assumption 1 is that ∆Xt and β′Xt may be written as linear processes

in terms of εt, with exponentially decaying coefficient matrices. That is, these are “stable”

processes in the sense of Cavaliere, Rahbek and Taylor (2010b), which would reduce to sta-

tionary [or I(0)] processes if the unconditional variance of εt were constant. Because we allow

for time-varying behaviour in the variance matrices (both conditional and unconditional), the

definitions of integrated and co-integrated processes do not formally apply in the present case,

although it will be convenient still to refer to the elements of β as co-integration parameters (as

in the title of this paper). The assumption on the number of unit roots excludes integration of

a higher order, and is equivalent to the assumption that |α′⊥Γβ⊥| 6= 0, with Γ := Ip−
∑k−1

j=1 Γj ;

see Johansen (1996).

As regards the sequence εt, we assume the following:

Assumption 2. The process εt can be written as εt = σtzt, where:

(a) σt = σ(t/T ), where σ(·) is a non-stochastic element of DRp×p [0, 1] such that Σ(u) :=

σ(u)σ(u)′ > 0 for all u ∈ [0, 1];

(b) zt is a p-vector martingale difference sequence relative to a filtration Ft, with conditional

variance matrix ht := E(ztz
′
t|Ft−1), satisfying

i. T−1
∑T

t=1 ht
p→ E(ztz

′
t) = Ip,

ii. T−1
∑T

t=1(ht ⊗ zt−i)
p→ E(ztz

′
t ⊗ zt−i) = 0 for i ≥ 1,

iii. T−1
∑T

t=1(ht⊗zt−iz′t−j)
p→ E(ztz

′
t⊗zt−iz′t−j) = τ ij for i, j ≥ 1, with supi,j≥1 ‖τ ij‖ =

τ <∞,

iv. suptE ‖zt‖
4r <∞ for some r > 1.

Assumption 2 implies that εt is a vector martingale difference sequence relative to Ft, with

conditional variance matrix Σt|t−1 := E(εtε
′
t|Ft−1) = σthtσ

′
t, and time-varying unconditional

variance matrix Σt := E (εtε
′
t) = σtσ

′
t > 0. As such, it combines the assumptions of Cavaliere,

Rahbek and Taylor (2010a) and Cavaliere, Rahbek and Taylor (2010b), who consider VAR

models with stationary conditional heteroskedasticity or non-stationary unconditional volatil-

ity, respectively. These are obtained as special cases with σ(·) = σ (constant unconditional

variance, hence only conditional heteroskedasticity) and ht = Ip (so Σt|t−1 = Σt = Σ(t/T ), only

unconditional non-stationary volatility). As discussed in Cavaliere, Rahbek and Taylor (2010b),

Assumption 2 (a) implies that the elements of Σt are only required to be bounded and to display

a countable number of jumps, therefore allowing for an extremely wide class of potential models

for the behaviour of the variance matrix of εt, including single or multiple variance or covariance

shifts, variances which follow a broken trend, and smooth transition variance shifts. Assump-

tion 2 (b) is inspired by Assumption A of Gonçalves and Kilian (2004). Deo (2000) provides
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examples of stochastic volatility and generalised autoregressive-conditional heteroskedasticity

(GARCH) processes that satisfy Assumption 2 (b), including Gaussian GARCH(1,1) processes

with a finite unconditional 8th moment.

2.1 Representation

Before we introduce the class of hypotheses we will consider in this paper, we provide some pre-

liminary results on the stable and unstable linear combinations of Xt. Let µDt = µ1D1t+µ2D2t,

where µ1 = αρ′1, and let Xt := (X ′t, . . . , X
′
t−k+1)′, and Xβt :=

(
X ′tβ,∆X

′
t, . . . ,∆X

′
t−k+1

)′
=

B′Xt, where B is defined implicitly; if k = 1, then B = β and Xβt = β′Xt. Lemma 1 of Cav-

aliere, Rahbek and Taylor (2010b) applies directly to our model under Assumptions 1 and 2,

and states that

Xβt = ΦXβ,t−1 + F (µDt + εt), (2)

where the autoregressive matrix is defined by Φ := Ir+p(k−1) + B′A, with

A :=

(
α Ψ

0 Ip(k−1)

)
, Ψ := [Γ1, . . . ,Γp−1],

and where F := (β, Ip, 0, . . . , 0)′. Because ρ(Φ) < 1, Xβt is a stable process. For Xt, Lemma 1

of Cavaliere, Rahbek and Taylor (2010b) yields the result that

Xt = C
t∑
i=1

(µDi + εi) + St + C0, (3)

where C := β⊥ (α′⊥Γβ⊥)−1 α′⊥, St := (Ir, 0, . . . , 0)A(B′A)−1Xβt, and where C0 is a constant,

depending on the initial values, defined by C0 := C (Ip,−Ψ)X0. These results are purely

algebraic and, hence, do not depend on specific assumptions on εt = σtzt. The result in (3)

implies that the stochastic part of α′⊥ΓXt is given by the sum of the heteroskedastic random

walk
∑t

i=1 α
′
⊥εi, and the stable process α′⊥ΓSt.

The following result gives the limiting behaviour of the random walk component,
∑t

i=1 εi,

and of a particular sample moment matrix. It is a direct extension of Lemma 2 of Cava-

liere, Rahbek and Taylor (2010b), although in the present context we also allow for stationary

conditional heteroskedasticity in zt of the form specified in Assumption 2 (b):

Lemma 1. Let εt = σtzt satisfy Assumption 2, and let W (·) denote a p-variate standard

Brownian motion. Then, as T →∞,

(
MT (·),

∫ 1

0
MT (s)dMT (s)′

)
:=

 1

T 1/2

bT ·c∑
t=1

εt,
1

T

T∑
t=1

(
t−1∑
i=1

εi

)
ε′t

 w→
(
M(·),

∫ 1

0
M(s)dM(s)′

)
,

where M(·) :=
∫ ·

0 σ(s)dW (s) is a p-variate continuous martingale.
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2.2 Hypotheses

For unknown parameters α and β (of dimension p×r but not necessarily of full column rank), ρ1,

{Γj}k−1
j=1 and µ2, and for a given sequence {εt} satisfying Assumption 2, (1) is the unrestricted

heteroskedastic co-integrated VAR model, denoted in what follows as Hr. It will be convenient

to write the model in the compact form

Z0t = αβ#′Z1t + Ψ#Z2t + εt, (4)

with Z0t := ∆Xt, Z1t := (X ′t−1, D
′
1t)
′, Z2t := (∆X ′t−1, . . . ,∆X

′
t−k+1, D

′
2t)
′, β# := (β′, ρ′1)′ and

Ψ# := (Ψ, µ2). If Dit is set equal to 0, it is understood that Dit is to be dropped from the

definition of Zit, i = 1, 2. We also define p# := p+ d1, the number of rows of β#.

Within this model we wish to test linear hypotheses on the co-integration parameters β# and

the adjustment coefficients α. Because β# is only identified up to its column space, some restric-

tions are needed to identify the individual components of β#, before further (over-identifying)

restrictions can be considered. Therefore, we normalise β by c′β = Ir for some known p × r
matrix of full column rank, so that β = c̄ + c⊥β2, where β2 = c̄′⊥β is a (p − r) × r matrix of

free parameters; where c̄ = c(c′c)−1 and c̄⊥ = c⊥(c′⊥c⊥)−1. Defining

β#
2 :=

(
β2

ρ1

)
, c# :=

(
c

0

)
, c#⊥ :=

(
c⊥ 0

0 Id1

)
,

and

c̄# = c#(c#′c#)−1, c̄#
⊥ = c#

⊥(c#′
⊥ c

#
⊥)−1,

we similarly have β# = c̄# + c#
⊥β

#
2 , with β#

2 = c̄#′
⊥ β

#.

Based on this normalisation, we consider the following class of hypotheses on β#
2 and α:

H0β : Rβ vecβ#
2 = qβ,

H0α : Rα vecα′ = qα,

H0 = H0β ∩H0α : Rθ = q, (5)

where Rβ and Rα are matrices of dimensions rβ× (p#−r)r and rα×pr, respectively, of full row

rank, and qβ and qα are rβ × 1 and rα× 1 vectors; furthermore, R = diag(Rβ, Rα), q = (q′β, q
′
α),

and θ = ((vecβ#
2 )′, (vecα′)′)′. The theory developed in this paper could be extended to more

general non-linear restrictions, and restrictions linking α and β, but (5) appears to offer a

sufficient level of generality for most practical purposes.

For obtaining the PML estimators under the restrictions (5), needed to compute the PLR

statistic, we rewrite the joint hypothesis H0 (together with the normalisation of β#) as:

H ′0 : vecβ# = Hφ+ h, vecα′ = Gψ + g, (φ, ψ) ∈ Rlφ × Rlψ , (6)

where H = Q⊥ and h = Q(Q′Q)−1((vec Ir)
′, q′β)′, with

Q =
[

(Ir ⊗ c#) (Ir ⊗ c̄#
⊥)R′β

]
,
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where G = (R′α)⊥ and g = R′α(RαR
′
α)−1qa, and where φ and ψ are unrestricted parameters,

of dimensions lφ = (p# − r)r − rβ and lψ = pr − rα. Null hypotheses of the form (6), but

with g = 0, were considered by Boswijk (1995) (see also Boswijk and Doornik (2004)), as a

generalisation of the restrictions β#
i = Hiφi + hi on the separate vectors of β# considered by

Johansen (1995). If only restrictions on β# are considered (i.e., for testing H0β), then G = Ipr

and g = 0; for hypotheses H0α on only α, take H = (Ir ⊗ c#
⊥) and h = vec c̄#.

3 Asymptotic Inference

In this section we analyse asymptotic inference on the class of hypotheses in (5) defined in the

previous section, in the model (1) under Assumptions 1 and 2. As in Johansen (1996), the

analysis will be based on the Gaussian pseudo-likelihood, derived from the assumption that εt

is an i.i.d. N(0,Σ) sequence. Assumption 2 implies that in general, this likelihood is based on

a misspecified model, and the purpose of this section is to assess the asymptotic consequences

of this misspecification. We analyse the PLR test as well as a Wald test based on the PML

variance matrix estimate of the parameter estimators.

To simplify notation, asymptotic results will be provided only for the model with a restricted

constant, where Z1t = (X ′t−1, 1)′ and Z2t = (∆X ′t−1, . . . ,∆X
′
t−k+1)′, so Ψ# = Ψ. Analogous

results can be obtained for models with a more general specification of the deterministic com-

ponents, but at the cost of more involved notation.

In what follows, for a given vector of parameters, θ say, the unrestricted PML estimator for

θ will be denoted θ̂, while the PML estimator obtained under the restriction of H0 of (5) will

be denoted θ̃.

3.1 The PLR Test

The concentrated pseudo-log-likelihood in terms of the parameters α, β# and Σ can be expressed

in terms of the sample moment matrices

Sij := Mij −Mi2M
−1
22 M2j , i, j = 0, 1, (7)

with Mij := T−1
∑T

t=1 ZitZ
′
jt, i, j = 0, 1, 2. Up to a constant, the pseudo-log-likelihood is given

by

`(α, β#,Σ) = −T
2

log |Σ| − T

2
tr Σ−1(S00 − 2αβ#′S10 + αβ#′S11β

#α′). (8)

If α is unrestricted, the log-likelihood may be further concentrated with respect to α and Σ to

yield

`(β#) = −T
2

log
∣∣∣S00 − S01β

#(β#′S11β
#)−1β#′S10

∣∣∣− Tp

2
. (9)

The maximiser of `(β#) under the normalisation c#′β# = Ir, see Johansen (1996), is

given by β̂
#

:= β̂
#

u (c#′β̂
#

u )−1, where β̂
#

u := [v̂1, . . . , v̂r], with v̂i, i = 1, . . . , r the eigenvec-

tors corresponding to r largest eigenvalues λ̂1 ≥ . . . ≥ λ̂r of the generalised eigenvalue problem

8



∣∣λS11 − S10S
−1
00 S01

∣∣ = 0. The maximised log-likelihood is given by

`(β̂
#

) = `(β̂
#

u ) = −T
2

(
p+ log |Σ̂|

)
, Σ̂ := S00

∏r
i=1(1− λ̂i).

Under the restrictions vecβ# = Hφ + h, vecα′ = Gψ, the log-likelihood (8), possibly after

concentrating out Σ, can be maximised over (φ, ψ) using a Newton-type algorithm. Alterna-

tively, a switching algorithm can be used that exploits the fact that expressions for the partial

maximisers β̃
#

(α,Σ), α̃(β#,Σ) and Σ̃(α, β#) of `(α, β#,Σ) are available in closed form; see

Boswijk (1995) and Boswijk and Doornik (2004) for further details. Letting Σ̃ denote the PML

estimator of Σ under the restrictions, the PLR statistic is then given by

LRT := T log |Σ̃|/|Σ̂|.

The next lemma characterizes the asymptotic behaviour of the three sufficient statistics

S00, S10 = S′01 and S11. These results will subsequently be used to characterize the limiting

behaviour of the likelihood function and, hence, of the PLR statistic.

Lemma 2. Let Xt satisfy the model (1) under Assumptions 1 and 2. Let BT := diag(T−1/2β⊥, 1)

and S1ε := S10 − S11β
#α′, with Sij , i, j = 0, 1 as given in (7). Then, as T →∞,

β#′S11β
# p→ Σ̄ββ , β#′S10

p→ Σ̄β0, S00
p→ Σ̄00, (10)

and

T 1/2β#′S1ε
w→ N(0,Ω), (11)

where Σ̄ββ and Ω are positive definite matrices, defined in the Appendix, and where Σ̄β0 :=

Σ̄ββα
′ and Σ̄00 := Σ̄ + αΣ̄ββα

′, with Σ̄ :=
∫ 1

0 Σ(s)ds. Furthermore,(
B′TS11BT , T

1/2B′TS1ε

)
w→
(∫ 1

0
G(s)G(s)′ds,

∫ 1

0
G(s)dM(s)′

)
, (12)

where G(u) := (M(u)′C ′β⊥, 1)′, and

B′TS11β
# p→ 0. (13)

The expressions for Σ̄ββ and Ω, derived in the proof of Lemma 2 in the Appendix, imply

that in general Ω 6= Σ̄⊗ Σ̄ββ . This implies that T 1/2(β#′S11β
#)−1/2β#′S1εΣ̂

−1/2, which would

be a natural candidate for a standardised version of β#′S1ε provided that Σ̂
p→ Σ̄, is in general

not an asymptotically standard normal random vector. The property Ω = Σ̄⊗ Σ̄ββ only holds if

both σ(s) = σ (a constant unconditional volatility) and τ ij = I(i = j)Ip2 for all i, j ≥ 1 (which

excludes volatility clustering). This will have implications for testing hypotheses on α in the

next theorem, which gives the asymptotic null distribution of the PLR statistic, together with

some additional results on the consistency and asymptotic distribution of the PML estimators.

For notational convenience, we only consider the case where the restrictions on β# do not

involve the constant term ρ1, and hence relate to β2 only.
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Theorem 1. Under the conditions of Lemma 2, and as T →∞:

(a) the PML estimators of (β#, α,Ψ) are consistent, i.e.,

β̂
# p→ β#, α̂

p→ α, Ψ̂
p→ Ψ,

and Σ̂
p→ Σ̄;

(b) the asymptotic distribution of β̂2, ρ̂1 and α̂ is given by(
T (β̂2 − β2)

T 1/2(ρ̂1 − ρ1)

)
w→

(∫ 1

0
Gc(s)Gc(s)

′ds

)−1 ∫ 1

0
Gc(s)dMα(s)′,

T 1/2(α̂− α)′
w→ N(0, [Ip ⊗ Σ̄−1

ββ ]Ω[Ip ⊗ Σ̄−1
ββ ]),

where Gc(u) := diag(β′⊥c⊥(β′⊥β⊥)−1, 1)G(u) and Mα(u) := (α′Σ̄−1α)−1α′Σ̄−1M(u);

(c) under H0,

LRT
w→ ((LR∞(β) + LR∞(α)) =: LR∞ (14)

where

LR∞(β) :=

(
Rβ vec

(∫ 1

0
Gc(s)Gc(s)

′ds

)−1 ∫ 1

0
Gc(s)dMα(s)′

)′

×

(
Rβ

[
(α′Σ̄−1α)−1 ⊗

(∫ 1

0
Gc(s)Gc(s)

′ds

)−1
]
R′β

)−1

×Rβ vec

(∫ 1

0
Gc(s)Gc(s)

′ds

)−1 ∫ 1

0
Gc(s)dMα(s)′ (15)

LR∞(α) := Z ′
(
Rα[I ⊗ Σ̄−1

ββ ]Ω[I ⊗ Σ̄−1
ββ ]R′α

)1/2

×
(
Rα[Σ̄⊗ Σ̄−1

ββ ]R′α

)−1 (
Rα[I ⊗ Σ̄−1

ββ ]Ω[I ⊗ Σ̄−1
ββ ]R′α

)1/2
Z (16)

and where Z ∼ N(0, Irα), independent of (Gc,Mα).

Remark 3.1. It can be seen from part (b) of Theorem 1 that the normalised estimators, β̂2, ρ̂1

and α̂ attain exactly the same rates of consistency under heteroskedasticity of the form given

in Assumption 2 as they do under the assumption of i.i.d. shocks; cf. Johansen (1996, Chapter

13). Moreover, it is also seen from part (a) that the PML estimates of the short-run dynamic

parameter matrices, Γ1, . . . ,Γk−1, also retain consistency under heteroskedasticity.

Remark 3.2. Observe from part (c) of Theorem 1 that the limiting null distribution of the

PLR test statistic is comprised of two components which are independent of one another. The

first component, LR∞(β), derives from the restrictions H0β in (5), while the second, LR∞(α),

derives from the restrictions H0α in (5). Both of these components can be seen to depend on

nuisance parameters arising from the heteroskedasticity present in the shocks. Moreover, notice
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that when only H0β [H0α] is tested, then so the component LR∞(α) [LR∞(β)] vanishes from

the right member of (14).

Remark 3.3. The independence of the two components LR∞(β) and LR∞(α) derives from

the independence of Z and M(·). As shown in the proof of Lemma 2, this independence is

guaranteed by Assumption 2 (b) ii., which requires the conditional variance matrix of zt to be

independent of lagged levels, ruling out statistical leverage effects. It should be emphasised,

however, that this assumption is needed only for the independence of the two components,

which is relevant only in case the null hypothesis restricts both β2 and α. For hypotheses on

β2 only (or, indeed, on α only), this assumption is not required.

Remark 3.4. Consider the first component, LR∞(β), relating to the restrictions on β. The

stochastic integral
∫ 1

0 Gc(s)dMα(s)′ clearly plays a key role in the asymptotic distribution of β̂
#

2 .

Both Gc(·) and Mα(·) can be expressed as linear combinations of the continuous-time Gaussian

martingale M(·) =
∫ ·

0 σ(s)dW (s). This means that these two processes are independent only if

their cross-variation process

〈Gc,Mα〉 (u) = Aβ′⊥C 〈M〉 (u)Σ̄−1α(α′Σ̄−1α)−1

= Aβ′⊥C

∫ u

0
Σ(s)dsΣ̄−1α(α′Σ̄−1α)−1

is zero for all u ∈ [0, 1], where A := diag(β′⊥c⊥(β′⊥β⊥)−1, 1). Although the property Cα =

β⊥(α′⊥Γβ⊥)−1α′⊥α = 0 implies that 〈Gc,Mα〉 (1) = 0, this property does not extend to all

u, so that in general, the two processes are not independent. This in turn implies that the

distribution of
∫ 1

0 Gc(s)dMα(s)′ is in general not mixed Gaussian, which is a necessary condition

for a quadratic form in this stochastic integral to have a χ2 distribution. Clearly, if the variance

process σ(u) is constant, then Gc and Mα are independent vector Brownian motions, and here

it is simple to show that LR∞(β) is χ2(rβ) distributed, as is the case where the shocks are

i.i.d.; see Johansen (1996).

Remark 3.5. Another example where Gc(·) and Mα(·) are independent occurs where Σ(u)

can be written as the product of a constant matrix Σ and a scalar time-varying process v(u),

corresponding to the case of “common volatility shocks”; see Remark 2.3 of Cavaliere, Rahbek

and Taylor (2010b). However, in this example LR∞(β) will not be χ2(rβ) distributed in gen-

eral. To see why, observe that
∫ u

0 Σ(s)dsΣ̄−1 =
∫ u

0 v(s)dsv̄−1Ip, where v̄ =
∫ 1

0 v(s)ds, so that

〈Gc,Mα〉u = 0 for all u, and the distribution of
∫ 1

0 Gc(s)dMα(s)′ is again mixed Gaussian, but

in this case with conditional variance matrix[
(α′Σ̄−1ᾱ)−1α′Σ̄−1 ⊗ Ip#−r

] ∫ 1

0
[Σ(s)⊗Gc(s)Gc(s)′]ds

[
Σ̄−1α′(α′Σ̄−1ᾱ)−1 ⊗ Ip#−r

]
.

Now ∫ 1

0
[Σ(s)⊗Gc(s)Gc(s)′]ds = Σ⊗

∫ 1

0
v(s)Gc(s)Gc(s)

′ds

6= Σv̄ ⊗
∫ 1

0
Gc(s)Gc(s)

′ds = Σ̄⊗
∫ 1

0
Gc(s)Gc(s)

′ds
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unless v(u) = 1 and, hence, Σ(u) = Σ for all u ∈ [0, 1]. Consequently, in this case LR∞(β)

will only be χ2(rβ) distributed when σ(u) is constant. However, we will subsequently show in

Section 3.2 below that the independence of Gc(·) and Mα(·) is necessary and sufficient for the

Wald tests based on the use of a sandwich-type PML variance matrix to deliver χ2 inference.

Remark 3.6. Notice that inference on β# is asymptotically unaffected by the possibility of

volatility clustering in zt (where the conditional variance matrix ht may be correlated with

lagged squares and cross-products), because the matrices τ ij = E(ztz
′
t⊗ zt−iz

′
t−j) do not enter

the right member of (15).

Remark 3.7. For the second component of the limiting null distribution of LRT appearing

in the right member of (14), relating to the restrictions on α, we observe that LR∞(α) is

a quadratic form in a standard normal vector. However, because the weight matrix in this

quadratic form is, in general, not an identity matrix, LR∞(α) will not have a χ2(rα) distribution

in general. As discussed below Lemma 2, standard inference does, however, obtain if both σ(u)

is constant and zt does not display volatility clustering, so that τ ij = I(i = j)Ip2 for all i, j ≥ 1.

More generally, however, standard asymptotic inference is expected to be delivered by the

PML-based Wald test, as will be discussed in the next subsection.

Remark 3.8. Hansen (1992a) considers asymptotic inference on β2 in a single equation Engle

and Granger (1987) co-integrating regression model where the regressors are homoskedastic

I(1) processes but the errors display non-stationary volatility (specifically, volatility follows

an I(1) process in his set-up). In the notation of the present paper, this corresponds to the

case where α′⊥M(u) is a Brownian motion with constant variance matrix α′⊥Σ̄α⊥, and where

Mα(u) has a time-varying (conditional) variance matrix. Hansen (1992a) shows that mixed

normal inference arises if the Brownian motion driving Mα is independent of α′⊥M(u) and the

stochastic volatility process, which implies that α′Σ̄−1Σ(u)α⊥ = 0 for all u ∈ [0, 1]. Notice that

by a suitable choice of the matrix square root σ(·) of Σ(·), we may write[
α′Σ̄−1

α′⊥

]
σ(u) =

[
ω11(u) ω12(u)

0 ω22

]
,

where ω22ω
′
22 = α′⊥Σ̄α⊥ and ω11(u)ω11(u)′ + ω12(u)ω12(u)′ = α′Σ̄−1Σ(u)Σ̄−1α. We also know

that ∫ 1

0
α′Σ̄−1Σ(u)α⊥du =

∫ 1

0
ω12(u)ω′22du = ω̄12ω

′
22 = 0.

However, this by itself does not guarantee or require that ω12(u) = 0 for all u. It is the

specific structure of the model considered in Hansen (1992a) which implies that α′Σ̄−1M(u) =∫ u
0 ω11(s)dW1(s) and α′⊥M(u) = ω22W2(u), and hence yields the independence of the two

processes. �
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3.2 The Wald Test

A Wald test statistic for null hypothesis H0 : Rθ = q in (5) takes the form

WT := (Rθ̂ − q)′(RV̂ar[θ̂]R′)−1(Rθ̂ − q), (17)

where V̂ar[θ̂] is an estimate of the asymptotic (conditional) variance matrix of θ̂. We consider

a PML-based variance matrix, which may be expressed as follows. Let γ := (θ′, (vec Ψ′)′)′,

and define the following estimates of the information matrix for γ based on minus the Hessian

matrix and the outer product of gradients, respectively:

H := −∂
2`(γ)

∂γ∂γ′
= T

[
J ′(Σ−1 ⊗M11)J J ′(Σ−1 ⊗M12)

(Σ−1 ⊗M21)J (Σ−1 ⊗M22)

]
,

I :=

T∑
t=1

∂`t(γ)

∂γ

∂`t(γ)

∂γ′
=

T∑
t=1

[
J ′(Σ−1εtε

′
tΣ
−1 ⊗ Z1tZ

′
1t)J J ′(Σ−1εtε

′
tΣ
−1 ⊗ Z2tZ

′
1t)

(Σ−1εtε
′
tΣ
−1 ⊗ Z2tZ

′
1t)J (Σ−1εtε

′
tΣ
−1 ⊗ Z2tZ

′
2t)

]
,

where

J :=
∂ vec(β#α′)

∂θ′
=
[

(α⊗ c#
⊥) (Ip ⊗ β#)

]
.

Then

V̂ar[θ̂] =
(
Ilθ 0

)
Ĥ−1ÎĤ−1

(
Ilθ

0

)
,

where lθ := (p#−r)r+pr = dim θ, and Ĥ and Î are as defined above, evaluated at γ = γ̂. In the

expressions above, the dependence of the pseudo-log-likelihood function ` on Σ is suppressed,

and derivatives with respect to the variance parameters are not taken into account, because

of the asymptotic block-diagonality of the Hessian matrix with respect to the regression and

variance parameters.

In Theorem 2 we detail the asymptotic null distribution of the Wald statistic, WT of (17).

This follows an important preparatory result relating to the scaled partial sum of the PML

residuals from the estimation of (1), ε̂, given in Lemma 3.

Lemma 3. Under the conditions of Lemma 2, and as T →∞,

V̂T (u) := T−1

bTuc∑
t=1

ε̂tε̂
′
t
p→
∫ u

0
Σ(s)ds =: V (u),

uniformly in u ∈ [0, 1].

Theorem 2. Under the conditions of Lemma 2, and under H0, and as T →∞,

WT
w→W∞(β) + Z ′Z =:W∞ (18)

where

W∞(β) :=

(
Rβ
(
Ir ⊗K−1

)
vec

∫ 1

0
Gc(s)dMα(s)′

)′
×
(
Rβ
(
Ir ⊗K−1

)〈
vec

∫ ·
0
Gc(s)dMα(s)′

〉
(1)
(
Ir ⊗K−1

)
R′β

)−1

×Rβ
(
Ir ⊗K−1

)
vec

∫ 1

0
Gc(s)dMα(s)′
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and where K :=
∫ 1

0 Gc(s)Gc(s)
′ds,〈∫ ·

0
vecGc(s)dMα(s)′

〉
(u) =

∫ u

0

[
〈Mα〉 (s)⊗Gc(s)Gc(s)′

]
ds,

with 〈Mα〉 (s) = (α′Σ̄−1α)−1α′Σ̄−1Σ(s)Σ̄−1α(α′Σ̄−1α)−1, and where Z ∼ N(0, Irα), indepen-

dent of (Gc,Mα).

Remark 3.8. It is seen from the result in (18) that, in contrast to the PLR test, the PML-

based Wald test leads to standard asymptotic χ2 inference on the adjustment parameters α.

However, inference on β is in general not mixed Gaussian in the limit, because the processes

Gc and Mα which appear in W∞(β) are in general not independent, as discussed in Remark

3.4. However, and in contrast to the component LR∞(β) appearing in the asymptotic null

distribution of the LRT statistic, the quadratic form in W∞(β) now involves a weight matrix

that is the inverse quadratic variation of the stochastic integral. This implies that W∞(β) will

be χ2(rβ) distributed in the special case where Gc and Mα are independent, as happens in the

“common volatility shocks” example outlined in Remark 3.5. �

For completeness, we summarize the asymptotic null distribution of the WT statistic in the

case where Gc and Mα are independent in following corollary.

Corollary 1. Under the conditions of Lemma 2, and if α′⊥Σ(u)Σ̄−1α = 0 for all u ∈ [0, 1],

then under H0 and as T →∞, WT
w→ χ2(rβ + rα).

We conclude this section by providing a theorem detailing the consistency of the restricted

PML estimators, which will subsequently be needed to prove the consistency of our proposed

method of bootstrap inference outlined in the next section.

Theorem 3. Under the conditions of Lemma 2, under H0, and as T →∞,

β̃2−β2 = Op(T
−1), ρ̃1−ρ1 = Op(T

−1/2), α̃−α = Op(T
−1/2), Ψ̃−Ψ = Op(T

−1/2).

Furthermore, denoting the PML residuals from the estimation of (1) under H0 by ε̃t,

ṼT (u) := T−1

bTuc∑
t=1

ε̃tε̃
′
t
p→ V (u),

uniformly in u ∈ [0, 1].

4 Bootstrap Inference

In this section we outline our proposed wild bootstrap-based implementations of the PLR

and Wald tests from Section 3. We will provide sufficient conditions for the wild bootstrap

implementations of the PLR and Wald tests to be asymptotically valid under heteroskedasticity
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of the form given in Assumption 2, although as we will show in some cases these conditions will

need to be strengthened somewhat.

The following notation will be used throughout this section: P ∗ and E∗ respectively denote

the probability and expectation conditional on the realization of the original sample. Moreover,

for a given sequence X∗T computed on the bootstrap data, with the notations X∗T = o∗p (1),

in probability, and X∗T
p∗→p X we mean that P ∗ (|X∗T | > ε) → 0 in probability and P ∗(|X∗T −

X|) > ε) → 0 in probability, respectively, for any ε > 0 as T → ∞. Finally, ‘
w∗→p’ denotes

weak convergence in probability (Giné and Zinn (1990); Hansen (1996)); that is, X∗T
w∗→p X if

supx∈R |P ∗ (XT ≤ x)− P (X ≤ x) | →p 0.

4.1 Wild Bootstrap Algorithms

We first outline our proposed algorithm which draws on the wild bootstrap principle; see, inter

alia, Wu (1986), Liu (1988) and Mammen (1993). The bootstrap algorithm we propose is based

on the restricted PML parameter estimates obtained by estimating the model in (1) under the

null hypothesis H0 of (5), as outlined in 3. More specifically, let θ̃ := {α̃, β̃, ρ̃1, Ψ̃
#, µ̃2} denote

the restricted PML estimators of θ := {α, β, ρ1,Ψ
#, µ2}, define β̃

#
:=
(
β̃
′
, ρ̃′1

)′
. Recall that

ε̃t := Z0t − α̃β̃
#′
Z1t − Ψ̃#Z2t, with Zit, i = 0, 1, 2, as defined in Section 2.2, denote the

corresponding PML residuals from the estimation of (1) under H0.

Algorithm 1 (wild bootstrap):

(i) Estimate model (1) using Gaussian PML under the null hypothesis yielding the estimates

θ̃, together with the corresponding restricted PML residuals, ε̃t, as defined above.

(ii) Check that the equation |Ã (z) | = 0, with Ã (z) := (1− z) Ip − α̃β̃
′
z −

∑k−1
i=1 Γ̃iz (1− z),

has roots either equal to 1 or outside the unit circle. If so, proceed to step (iii).

(iii) Compute the re-centered residuals ε̃c,t := ε̃t − T−1
∑T

i=1 ε̃t and construct the bootstrap

errors ε∗t := ε̃c,twt, where wt, t= 1, . . . , T , is an i.i.d. sequence with E(wt) = 0, E(w2
t ) = 1

and E(w4
t ) <∞.

(iv) Construct the bootstrap sample {X∗t } from the recursion

∆X∗t = α̃β̃
#′
X∗t−1 +

k−1∑
j=1

Γ̃j∆X
∗
t−j + α̃ρ̃′1D1t + µ̃2D2t + ε∗t , t = 1, . . . , T, (19)

with the T bootstrap errors ε∗t generated in step (ii) and with initial values X∗t = Xt for

t = −k + 1, . . . , 0.

(v) Using the bootstrap sample, {X∗t }, compute the bootstrap test statistic S∗T , where S∗T

generically denotes either the PLR or the Wald statistic, as detailed in section 3.1. Define

the corresponding p-value as P ∗T := 1−G∗T (ST ) with G∗T (·) denoting the conditional (on

the original data) cumulative density function (cdf) of S∗T .
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(vi) The wild bootstrap test of H0 at level ξ rejects if P ∗T ≤ ξ.

Remark 4.1. Step (ii) of Algorithm 1 checks whether the bootstrap data generating process

satisfies the I(1, r) conditions (cf. Assumption 1). Although this will always be true in large

samples, see Theorem 3, this could fail with a finite sample size. Consequently, step (ii) checks

that the bootstrap samples are indeed I(1) with co-integration rank r. Analogous conditions

are also checked in the bootstrap algorithms for testing the co-integrating rank proposed in

Swensen (2006) and in Cavaliere, Rahbek and Taylor (2010a,b, 2012, 2014).

Remark 4.2. In the context of stationary data, it is often seen in the wild bootstrap literature

(for a review, see Davidson and Flachaire (2008)) that improved bootstrap accuracy can be

achieved by generating the pseudo-data according to an asymmetric distribution with E(wt) =

0, E(w2
t ) = 1 and E(w3

t ) = 1 (Liu, 1988). A well-known example of this is the Mammen (1993)

distribution: P (wt = −0.5(
√

5−1)) = 0.5(
√

5+1)/
√

5 =: π, P (wt = 0.5(
√

5+1)) = 1−π. Two

other commonly used distributions are the two-point distribution P (wt = −1) = P (wt = 1) =

0.5 and an i.i.d. N(0, 1) sequence. The large sample properties of the resulting bootstrap tests

are not affected by this choice. In simulations we found that these three distributions gave very

similar small sample performances, and so the results presented in Section 5 relate to the use

of the N(0, 1) distribution for wt.

Remark 4.3. In step (i) of Algorithm 1 the estimates of the parameters characterizing (1),

which are then used in constructing the bootstrap sample data in steps (ii) and (iii), are

obtained under the restriction of the null hypothesis, H0 of (5). As suggested in Fachin and

Omtzigt (2006), it would also be possible to estimate these parameters without imposing the

null hypothesis (i.e., using the unrestricted PML estimators detailed in section 3.1 and in

Theorem 1), and to subsequently calculate a bootstrap test statistic for the hypothesis Rθ = Rθ̂.

Unreported simulations indicate that the bootstrap based on restricted estimates is largely

preferred. Hence, throughout this section for economy of discussion we will only explicitly

discuss the bootstrap based on restricted estimates.

Remark 4.4. In practice, the cdf G∗T (·) required in step (iv) of Algorithm 1 will be unknown,

but can be approximated in the standard way through numerical simulation. This is achieved

by generating B (conditionally) independent bootstrap statistics, S∗T :b, b = 1, . . . , B, computed

as in Algorithm 1 above. The simulated bootstrap p-value for ST , for example, is then computed

as P̃ ∗T := B−1
∑B

b=1 I(S∗T :b > ST ), and is such that P̃ ∗T
a.s.→ P ∗T as B → ∞. The choice of B is

discussed by, inter alia, Andrews and Buchinsky (2000) and Davidson and MacKinnon (2000).

�

4.2 Bootstrap Asymptotic Theory

In this section we provide results on the asymptotic properties of the bootstrap PLR and Wald

statistics from Algorithm 1. In doing so we establish the conditions under which the bootstrap
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tests the first-order asymptotically valid.

For some aspects of the bootstrap asymptotic theory to hold we will need to strengthen

Assumption 2 in one of two possible ways. The first of these is to restrict zt (and hence εt) to

have finite 8+ moments. This is stated in Assumption 2′.

Assumption 2′. Assumption 2 holds with (b) iv. replaced by the following:

(b) iv. supE ‖zt‖4r <∞ for some r > 2.

The second additional restriction rules out leverage effects in the conditional variance of zt;

that is, correlation between the conditional variance ht and the past shocks zt−iz
′
t−j (i 6= j =

1, 2, . . .), see Gonçalves and Kilian (2004). This is formally stated in Assumption 2′′.

Assumption 2′′. Assumption 2′ holds with (b) iii. replaced by the following:

(b) iii. T−1
∑T

t=1(ht ⊗ zt−iz′t−j)
p→ E(ztz

′
t ⊗ zt−iz′t−j) = τ ij for i, j ≥ 1, with supi,j≥1 ‖τ ij‖ =

τ <∞ and τ ij = 0 for all i 6= j.

Before detailing the large sample behaviour of the bootstrap PLR and Wald statistics, we

first need to establish two preparatory Lemmas. The first of these is the counterpart of Lemma

1 for the wild bootstrap shocks.

Lemma 4. Let the conditions of Lemma 2 hold, and let ε∗t be defined as in step (iii) of Algorithm

1. Then, as T →∞,(
M∗T (·),

∫ 1

0
M∗T (s)dM∗T (s)′

)
:=

 1

T 1/2

bT ·c∑
t=1

ε∗t ,
1

T

T∑
t=1

(
t−1∑
i=1

ε∗i

)
ε∗′t


w∗→p

(
M(·),

∫ 1

0
M(s)dM(s)′

)
,

where M(·) :=
∫ ·

0 σ(s)dW (s) is a p-variate continuous martingale defined in terms of the p-

variate Brownian motion W (·).

Remark 4.4. Lemma 4 establishes that the two scaled cumulated functions considered of the

wild bootstrap errors can replicate the limiting process of the corresponding quantities formed

from the original shocks, εt; cf. Lemma 1. Notice, however, that for this this result to hold

Assumption 1 must be satisfied, since this is needed to ensure that the restricted PML estimate,

θ̃, from (1) is consistent, as demonstrated in Theorem 3. �

The next lemma, which is the bootstrap counterpart of Lemma 2, characterises the asymp-

totic behaviour of the three bootstrap sufficient statistics, S∗00, S∗10 = S∗′01 and S∗11. These results

will subsequently be used in determining the limiting behaviour of the bootstrap PLR statistic.

Lemma 5. Let X∗t be generated as in Algorithm 1 and let BT := diag(T−1/2β̃⊥, 1) and S∗1ε :=

S∗10 − S∗11β̃
#
α̃′, with S∗ij , i, j = 0, 1 defined analogously to (7) but for the bootstrap data. Then,

under the conditions of Lemma 2, as T →∞,

β̃
#′
S∗11β̃

∗# p∗→p Σ̄ββ , β̃
#′
S∗10

p∗→p Σ̄β0, S∗00
p∗→p Σ̄00 , (20)
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where Σ̄β0, Σ̄00 and Σ̄ββ are as previously defined. Furthermore,(
B′TS

∗
11BT , T

1/2B′TS
∗
1ε

)
w∗→p

(∫ 1

0
G(s)G(s)′ds,

∫ 1

0
G(s)dM(s)′

)
, (21)

where G(u) := (M(u)′C ′β⊥, 1)′, and

B′TS
∗
11β̃

# p∗→p 0 . (22)

Finally, if Assumption 2 is strengthened by Assumption 2′, then

T 1/2β̃
#′
S∗1ε

w∗→p N(0,Ω†), (23)

where Ω† is a positive definite matrix, defined in the Appendix.

Remark 4.5. It is useful to compare the asymptotic distributions involving S∗ij in Lemma 5 with

the corresponding distributions in Lemma 2. In the non-stationary directions of the system,

both
(
B′TS11BT , T

1/2B′TS1ε

)
and its bootstrap counterpart

(
B̃′TS

∗
11BT , T

1/2B̃′TS
∗
1ε

)
have the

same limiting distributions; compare (12) and (21). These distributions depend on the time

series behaviour of the unconditional volatility of the shocks (through the function σ (·) of

Assumption 2(a)) but not on the dynamics of the conditional volatility of zt. Conversely, in the

stationary directions of the system the wild bootstrap cannot, in general, replicate the correct

limiting distributions. For example, the limiting variance of T 1/2β∗#′S∗1ε, which is given by Ω†

(see equation (23)), is not equivalent to the limiting variance Ω of T 1/2β#′S1ε (see equation

(11)). This disparity occurs because Ω depends on the cross moments, E(ztz
′
t⊗ zt−iz′t−j) = τ ij ,

which the wild bootstrap cannot replicate since, conditionally on the sample data,

E∗(ε∗t ε
∗′
t ⊗ ε∗t−iε∗′t−j) = E∗(ε̃tε̃

′
tw

2
t ⊗ ε̃t−iε̃′t−jwt−iwt−j)

=
(
ε̃tε̃
′
tE
(
w2
t

))
⊗ (ε̃t−iε̃

′
t−jE (wt−iwt−j)) = 0

for all i 6= j. Therefore, it is anticipated that bootstrap PLR test statistics for hypotheses that

include restrictions on α, and which therefore involve β̃
#′
S∗1ε, will not be asymptotically pivotal

under the null unless Assumption 2′′ is additionally satisfied. �

We are now in a position to detail the asymptotic null properties of the wild bootstrap PLR

statistic from Algorithm 1.

Theorem 4. Let the conditions of Lemma 5 hold. Then, as T →∞:

(a) the asymptotic distribution of β̂
∗
2, ρ̂∗1 and α̂∗ is given by(

T (β̂
∗
2 − β̃2)

T 1/2(ρ̂∗1 − ρ̃1)

)
w∗→p

(∫ 1

0
Gc(s)Gc(s)

′ds

)−1 ∫ 1

0
Gc(s)dMα(s)′,

where Gc(u) = diag(β′⊥c⊥(β′⊥β⊥)−1, 1)G(u) and Mα(u) = (α′Σ̄−1α)−1α′Σ̄−1M(u).

If, in addition Assumption 2 is strengthened by Assumption 2′, then

T 1/2(α̂∗ − α̃)′
w∗→p N(0, [Ip ⊗ Σ̄−1

ββ ]Ω†[Ip ⊗ Σ̄−1
ββ ]),
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(c) Under H0, and if Assumption 2 is strengthened by Assumption 2′, then, as T →∞:

LR∗T
w∗→p LR∞(β) + LR†∞(α) (24)

where LR∞(β) is as defined in (15) and

LR†∞(α) := Z ′
(
Rα[I ⊗ Σ̄−1

ββ ]Ω†[I ⊗ Σ̄−1
ββ ]R′α

)1/2

×
(
Rα[Σ̄⊗ Σ̄−1

ββ ]R′α

)−1 (
Rα[I ⊗ Σ̄−1

ββ ]Ω†[I ⊗ Σ̄−1
ββ ]R′α

)1/2
Z,

where Z ∼ N(0, Irα), independent of (Gc,Mα).

For general linear hypotheses on α and β#, the limiting null distribution of the bootstrap

PLR statistic LR∗T from Algorithm 1 can be seen to depend on the limiting variance matrix

Ω†, rather than on the limiting variance matrix Ω as is the case for the original LRT statistic;

cf. part (c) of Theorem 1. Consequently, the bootstrap PLR test will not have the same first-

order limiting null distribution as the original PLR statistic unless Ω† = Ω. This equality holds

under the condition in Assumption 2′′ that τ ij = 0 for all i 6= j. Where this holds, LR†∞(α) and

LR∞(α) coincide, which means that LR∗T
w∗→p LR∞. As a consequence, the bootstrap PLR test

is, in general, only asymptotically valid if Assumption 2′′ holds. For completeness we formalise

this result in the following corollary, which gives the conditions under which the bootstrap PLR

test is guaranteed to be first-order asymptotically valid. Here P ∗T denotes the (wild bootstrap)

p-value associated with the PLR test statistic.

Corollary 2. If the conditions of Lemma 5 hold, strengthened by Assumptions 2′ and 2′′, then,

under H0, P ∗T
w→ U [0, 1], where U [0, 1] denotes a uniform distribution on [0, 1].

Remark 4.6. The result in Corollary 2 can be shown to hold under weaker conditions if the

null hypothesis being tested involves the co-integrating vectors β# only. In this case it is seen

from (24) that LR∗T
w∗→p LR∞(β), which does not depend on τ ij . Hence, the result in Corollary

2 holds without the need for the extra conditions in Assumption 2′′ (τ ij = 0 for i 6= j) to hold.

Indeed, as can be seen from the proof of Theorem 4, Assumption 2′ (finite 8+ order moments)

is also not needed to hold for Corollary 2 to hold when testing on β# alone.

Remark 4.7. Under the alternative hypothesis, it is proved in Cavaliere, Nielsen and Rahbek

(2013) for the i.i.d. bootstrap and under the assumption that the shocks εt are i.i.d., that the

bootstrap PLR statistic is of Op∗ (1), in probability. An immediate consequence of this result is

that the bootstrap PLR test is consistent, due to the divergence of the standard LRT statistic

when the null hypothesis does not hold. Their result can be extended to our framework by

using the asymptotic results given here. �

We conclude this section by detailing the asymptotic null distribution of the bootstrap Wald

statistic, W∗
T , from Algorithm 1. Here we let P ∗T denote the (wild bootstrap) p-value associated

with the Wald test statistic.
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Theorem 5. Let the conditions of Lemma 5 hold, strengthened by Assumptions 2′. Then under

H0, as T →∞:

W∗
T
w∗→p W∞

where W∞ is as given in (18). Consequently, P ∗T
w→ U [0, 1], where P ∗T denotes the (wild boot-

strap) p-value associated with the PML-based Wald statistic, WT .

Remark 4.8. In contrast to the bootstrap PLR test, it is seen from Theorem 5 that the wild

bootstrap implementation of the Wald test does not require that Assumption 2′′ holds. �

5 Monte Carlo Simulations

In this section, using Monte Carlo simulation methods, we compare the finite sample perfor-

mance of the asymptotic PLR and Wald tests from Section 3 with the corresponding wild

bootstrap tests from Section 4. For comparative purposes, we also report results for standard

i.i.d. bootstrap versions of the PLR and Wald tests. We note that the i.i.d. bootstrap statistics

are first order asymptotic equivalent to the standard PLR and Wald tests and hence the i.i.d.

bootstrap tests are asymptotically valid if and only if the corresponding asymptotic tests are

valid.

Our simulation DGP is the VAR(1) process of dimension p = 2, 3 and 4, with co-integrating

rank r = 1 and

∆Xt = αβ′Xt−1 + εt, α =

(
−0.2

0p−1

)
, β =

(
1

0p−1

)
.

where 0m denotes an m-vector of zeroes. The process is initialised at X0 = 0 and we consider

sample sizes of T = 100, 200 and 400. A restricted constant term is included in the estima-

tion. All experiments are run over 10, 000 Monte Carlo replications using B = 499 bootstrap

repetitions. In the context of Algorithm 1, any samples violating the root check conditions in

step (ii) are discarded. For each bootstrap procedure the observed (rounded) frequency of such

violations was below 0.3% for T = 100, and below 0.0% for the larger sample sizes considered.

As in Section 2, the errors are defined as εt = σtzt, zt being a martingale difference sequence

with unit unconditional variance matrix. Three versions of the unconditional variance matrix

Σt = σtσ
′
t are considered. Specifically, with ιm denoting an m-vector of ones, we consider

Σ
(1)
t = (1− ρ)Ip + ριpι

′
p =: Σ̄

Σ
(2)
t = vtΣ̄

Σ
(3)
t = (vt − ρ)Ip + ριpι

′
p = (vt − 1)Ip + Σ̄

which we label Cases 1, 2 and 3, respectively. In each case, we set ρ = 0.4 (implying a moderate

degree of correlation between the components of εt) and

vt = 0.5 I[0,0.8)

(
t
T

)
+ 3 I[0.8,1]

(
t
T

)
,
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such that the time-varying volatility factor vt displays a late positive shift. Notice that the

volatility factor is normalized such that v̄ :=
∫ 1

0 v (s) ds = 1, which implies that Σ̄(i) = Σ̄,

i = 1, 2, 3, where Σ̄(i) is defined analogously to the definition of Σ̄ in Lemma 2. For Σt = Σ
(1)
t ,

the errors εt are unconditionally homoskedastic. For Σt = Σ
(2)
t , a common time-varying factor

affects the whole unconditional variance matrix. In this case, we have that α′⊥Σ(u)Σ̄−1α = 0,

and the estimator β̂2 of the co-integrating vector is asymptotically mixed Gaussian; cf. Remark

3.5. Finally, for Σt = Σ
(3)
t there are no common unconditional volatility factors, and so β̂2 is

no longer mixed Gaussian. Regarding zt, this is generated as the linear map

zt = Λet (25)

where Λ is an invertible p × p matrix which is constant over time, with the p components of

et := (e1t, ..., ept)
′ independent across i = 1, ..., p. Without loss of generality, we set Λ = Ip.

Each of the p components eit is specified to follow a stationary GARCH(1, 1) process driven

by standard normal innovations; that is, eit = h
1/2
it ξit, i = 1, . . . , p, where ξit is i.i.d. N(0, 1),

independent across i, and hit = (1 − d0 − d1) + d0e
2
i,t−1 + d1hi,t−1, t = 0, . . . , T . Results are

reported for (d0, d1) ∈ {(0.0, 0.0), (0.1, 0.8)}; notice that for the former the errors are i.i.d.

Gaussian. In both of these cases, τ ij = 0 for all i 6= j; cf. Assumption 2 (b).

We report results for tests of the following hypotheses

H0β : β2 = 0,

H0α : α2 = 0,

where β2 = (0p−1 : Ip−1)β and α2 = (0p−1 : Ip−1)α, together with tests of the joint hypothesis

H0 = H0β ∩H0α.

In each case, we report empirical rejection frequencies [ERFs] for the tests which reject for large

values of the PLR and Wald statistics when compared to: (i) asymptotic (χ2) critical values;

(ii) i.i.d. bootstrap critical values; (iii) wild bootstrap critical values, where the bootstrap errors

in step (ii) of Algorithm 1 are instead obtained by i.i.d. sampling from the recentered {εt}Tt=1.

All tests are run at the nominal 5% significance level.

Insert Tables 1–3 about here

Results are reported in Tables 1, 2 and 3 for p = 2, p = 3 and p = 4, respectively. Entries

in italics correspond to tests which are not asymptotically valid; cf. Sections 3 and 4. The

following observations can be drawn from these results:

1. The results highlight the tendency for significant oversize in the standard asymptotic PLR

and Wald tests, even in cases where these are asymptotically valid. For example, in Case

1 (i.i.d.) for p = 3 and T = 100, the ERF of the asymptotic tests range from 13.4% to
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49.0%. Even for T = 400, the asymptotic tests on β have ERFs in excess of 10%. For

cases where the asymptotic tests are valid, both the i.i.d. and wild bootstrap versions of

these perform well, with ERFs significantly closer to the 5% nominal level than is seen

for the asymptotic tests.

2. In general, where the tests are known to be asymptotically valid, the observed size dis-

tortions are seen to decrease with the sample size T , as would be expected.

3. Other things being equal, the observed size distortions (of both the asymptotically valid

and invalid tests) display a clear dependence on the dimension of the system, p. In

particular, these tend to increase significantly with p. For example, the asymptotic PLR

test for H0β in Case 3 with no GARCH, for T = 100 displays an ERF of 22.5% for p = 2,

rising to 43.4% for p = 3 and 65.3% for p = 4. In this case, the ERFs of the corresponding

wild bootstrap PLR test are 6.1% for p = 2, 7.6% for p = 3 and 9.4% for p = 4.

4. Of the bootstrap tests considered, the wild bootstrap PLR test appears, on average, to

perform best, particularly so for the joint test of H0. For example, for p = 4 in Case 2

with no GARCH and T = 100 (T = 400), the wild bootstrap PLR test has an ERF of

5.7% (5.5%) while the wild bootstrap Wald test has an ERF of 10.3% (6.3%). In this

example, the invalidity of the i.i.d. bootstrap PLR test is clearly demonstrated, while the

i.i.d. bootstrap Wald test has an ERF of 11.2% for T = 100 reducing only to 8.1% for

T = 400.

5. A comparison of the results for the i.i.d. and the GARCH(1,1) cases suggests little ap-

parent differences between the two. This is to be expected for tests of H0β, since these

tests are asymptotically valid in both cases. Only very small differences are seen in those

tests involving H0α which are asymptotically invalid under GARCH dynamics, suggesting

that, at least for the GARCH(1,1) model considered here, the impact on finite sample

behaviour is limited.

6 Empirical Application

In this section we apply the methods developed in the previous sections to an empirical model

of the term structure of interest rates in the US. We use monthly observations over the period

1970:1–2009:12 on government zero yields yt(τ) for maturities τ = 3, 12, 36, 60, 120 (measured in

months), and hence we consider a VAR model for Xt = (yt(3), yt(12), yt(36), yt(60), yt(120))′.

The zero yields have been constructed from the CRSP un-smoothed Fama and Bliss (1987)

forward rates, see Diebold and Li (2006). The maturities have been chosen such that the

dimension of the VAR model stays manageable (p = 5), and yet a reasonable coverage of the

short, middle and long end of the term structure is obtained.
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The econometric analysis of term structure data in recent years has been dominated by

factor models, in particular the dynamic Nelson-Siegel model of Diebold and Li (2006). In this

model, the time-series behaviour of yt(τ) is described by the sum of level, slope and curvature

factors (f1t through f3t), each multiplied by their factor exposures:

yt(τ) = f1t +
1− e−λτ

λτ
f2t +

(
1− e−λτ

λτ
− e−λτ

)
f3t, (26)

where the shape parameter λ could be time-varying but in practice is often taken as constant

(Diebold and Li (2006) set λ = 0.0609). An idiosyncratic error term is implicitly needed to fit

the model to the data.

Depending on the unit root properties of f1t, f2t and f3t, the model has clear co-integration

implications. If all three factors have a unit root (and are not co-integrated), then a VAR model

of dimension p = 5 should contain 3 common trends and hence r = p − 3 = 2 co-integrating

relations. If the level and slope factors have a unit root, but the curvature factor is stable, then

r = 3; this is found by Diebold and Li (2006). Finally, if only the level factor has a unit root,

then r = 4 and β′⊥ = (1, . . . , 1), so that β′Xt consists of spreads yt(τ) − yt(3) for τ > 3. This

hypothesis also arises as the so-called (weak-form) expectations hypothesis of interest rates; see

Campbell and Shiller (1987).

We estimate a VAR(2) model with a constant term for Xt, using observations on the first two

months of 1970 as starting values; hence, the estimation sample is 1970:3–2009:12, with T = 478.

The lag order k = 2 is selected by the Hannan-Quinn information criterion; the Schwarz

(Bayesian) information criterion selects k = 1, but a first-order VAR model displays some rather

large first-order residual autocorrelation coefficients. The VAR(2) has much smaller, though

apparently significant residual autocorrelation. However, this significance may be partly driven

by the time-varying volatility; see Godfrey and Tremayne (2005). The Lagrange-multiplier

F -tests for first- and second-order residual (vector) autocorrelation in the VAR(2) model have

asymptotic p-values of 0.004 and 0.005; however, the corresponding wild bootstrap p-values

are 0.32 and 0.42, respectively. This already illustrates the large impact that non-stationary

volatility may have on the validity of standard asymptotic inference methods, when applied to

these data.

To visualise the possible presence of non-stationary volatility, we plot time series of VAR(2)

residuals, as well as the corresponding variance profiles, in Figure 1. The variance profiles, see

Caveliere and Taylor (2007), are plots of V̂T,ii(u)/V̂T,ii(1) against u ∈ [0, 1], where V̂T,ii(u) :=

T−1
∑bTuc

t=1 ε̂2
it. Deviations of this function from the diagonal (45 degree) line indicate the

presence of persistent changes in volatility. We focus on the first, third and fifth residual,

corresponding to the 3-month, 3-year and 10-year yields. In all series we may clearly distinguish

a period of relatively high volatility around the late 1970s and early 1980s, and a period of low

volatility since the mid-1980s (associated with the Great Moderation). This pattern is most

pronounced in the short rate residuals, and dampened in the longer-maturity residuals.

Insert Figure 1 about here

23



Table 4 displays the trace test statistics for co-integration rank (with restricted constant),

together with asymptotic, standard bootstrap and wild bootstrap p-values. The asymptotic

p-values are obtained using the procedure given in MacKinnon, Haug and Michelis (1999); the

standard (sieve-type) bootstrap follows Cavaliere, Rahbek and Taylor (2012), whereas the wild

bootstrap procedure is implemented as in Cavaliere, Rahbek and Taylor (2014); in all cases we

take B = 999 bootstrap replications. The standard bootstrap p-values are included to assess

to what extent the difference between the asymptotic and wild bootstrap results are due to the

correction for non-stationary volatility, or due to finite sample problems only.

Insert Table 4 about here

We observe that there is strong evidence against r = 0 or r = 1, regardless of the p-value

method used. The asymptotic and standard bootstrap p-values also lead us to reject r = 2

(at the 5% level), but the wild bootstrap leads to weaker evidence for r ≥ 3. Rejection of

r = 3 against r ≥ 4 is not supported by any of the methods at conventional significance levels,

although the asymptotic p-values would lead us to consider this possibility more seriously than

the bootstrap p-values. We conclude that a co-integration rank of r = 3 is supported by the

data (although only at the 10% significance level for the wild bootstrap procedure). In the

remainder of this section, we analyse some hypotheses on the co-integration parameters β and

adjustment coefficients α, first in the overspecified model with r = 4, and subsequently in the

preferred model with r = 3.

The unrestricted (but normalised) estimates of β and α in the model with r = 4, together

with the PML standard errors, are as follows:

β̂ =



−1.02
(0.03)

−0.99
(0.07)

−0.95
(0.10)

−0.87
(0.12)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, α̂ =



0.11
(0.24)

−0.15
(0.49)

0.22
(0.48)

−0.07
(0.14)

−0.48
(0.16)

0.40
(0.34)

−0.13
(0.37)

−0.02
(0.12)

−0.30
(0.12)

−0.02
(0.26)

0.11
(0.28)

−0.02
(0.09)

−0.34
(0.12)

0.19
(0.24)

−0.10
(0.24)

0.02
(0.08)

−0.26
(0.11)

−0.06
(0.22)

0.20
(0.21)

−0.09
(0.07)


.

We observe that β̂ is fairly close to the theoretical value implied by the expectations hypothesis,

or equivalently by the hypothesis of a dynamic Nelson-Siegel model with stable slope and

curvature factors. The PLR statistic for this hypothesis is equal to 8.01, with an asymptotic

p-value of 0.09, but a wild bootstrap p-value of 0.34. Therefore, this hypothesis cannot be

rejected (conditional on a co-integration rank of r = 4), although the asymptotic p-value would

cast some doubt on it.

A possible hypothesis of interest on α is that its first row is zero. This corresponds to the

hypothesis of weak exogeneity of the short rate X1t = yt(3) for the co-integration parameters.

Equivalently, it corresponds to the hypothesis that the single common trend (the non-stationary
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level factor) is fully driven by the disturbance from the first equation of the VAR model (α′⊥εt =

ε1t). The PLR test for this hypothesis has an asymptotic p-value of 0.25 and a bootstrap p-value

of 0.68, so this hypothesis cannot be rejected. The PLR test for the joint hypothesis (stationary

spreads and weak exogeneity of yt(3)) has an asymptotic p-value of 0.08 and a wild bootstrap

p-value of 0.55. This gives another example of a hypothesis where asymptotic and bootstrap

inference might yield different conclusions, at least if a significance level of 10% were adopted.

We now consider hypotheses in the model with r = 3 co-integrating vectors. In this model,

the spreads st(τ) := yt(τ)−yt(3) are not (all) stable, but a hypothesis of interest is that the co-

integrating relations can be expressed in terms of these spreads, which requires β′(1, . . . , 1) = 0.

The PLR statistic for this hypothesis has an asymptotic p-value of 0.24, and a wild bootstrap

p-value of 0.45, so this hypothesis is not rejected. The PML estimates under this restriction

are given by

β̃ =



−1.007 −0.71 −0.44

1 0 0

0 1 0

0 0 1

0.007
(0.07)

−0.29
(0.12)

−0.56
(0.11)


, α̃ =



0.13
(0.24)

−0.21
(0.50)

0.28
(0.49)

−0.48
(0.16)

0.42
(0.34)

−0.11
(0.38)

−0.30
(0.12)

0.06
(0.26)

0.09
(0.29)

−0.34
(0.12)

0.22
(0.23)

−0.10
(0.24)

−0.25
(0.11)

−0.09
(0.21)

0.21
(0.21)


.

For example, the second co-integrating vector implies that the three-year spread st(36) minus

0.29 times the 10-year spread st(120) is stable. The particular normalisation of β chosen in this

representation is inspired by the fact that the one-year spread st(12) is close to being stable (as

the estimate of 0.007 indicates). This would mean that the coefficient a in a stable relation of

the form of st(τ)− a · st(12) is not well defined, as it is normalised on the wrong variable.

Finally, it may be of interest to test whether the co-integrating relation found here is in

agreement with a dynamic Nelson-Siegel model of the form (26) with λ = 0.0609. This requires

that the matrix β is orthogonal to both the vector of level factor exposures (a vector of ones),

and the vector of slope factor exposures. It is easily seen that this corresponds to the hypothesis

H0 : β′Xt =


st(12)− 0.26 · st(120)

st(36)− 0.65 · st(120)

st(60)− 0.83 · st(120)

 .

The PLR test for this hypothesis (in the unrestricted model with r = 3) has a wild bootstrap

p-value of 0.01, which leads us to reject this hypothesis. A simpler model, in which the slope

factor exposure increases linearly with the horizon τ , corresponds to a hypothesis that cannot

be rejected, with a wild bootstrap p-value of 0.24.
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7 Conclusions

In this paper we have investigated the impact of the presence of time-varying volatility in

co-integrated VAR models on the standard methods of estimation (PML estimators) and hy-

pothesis testing (PLR tests) on the coefficients of the co-integrating relations and the adjust-

ment coefficients outlined in Johansen (1996). In particular, for a very general model which

allows both conditional and unconditional heteroskedasticity of a quite general form, we have

shown that the PML estimates remain consistent but that their limiting distributions depend

in general on nuisance parameters arising from the underlying volatility process. The latter

is also shown to be the case for the limiting null distributions of the PLR statistics, with the

implication that the resulting PLR tests can have true size significantly in excess of the nominal

significance level when based on conventional χ2 critical values. Solutions to this problem based

on Wald tests and on the use of the wild bootstrap were subsequently discussed. The conditions

under which these methods yield asymptotically valid inference were provided, with the wild

bootstrap implementation of the Wald test shown to require only a relatively mild strengthen-

ing of the necessary moment conditions for this to be obtained under the class of time-varying

volatility processes considered. Monte Carlo evidence was reported for a variety of condition-

ally and unconditionally heteroskedastic models which suggested that the proposed bootstrap

co-integration tests perform well in finite samples largely avoiding the oversize problems that

can occur with the standard tests, the latter being worse, other things equal, the higher the

dimension of the system. Finally, an application to the term structure of interest rates in the US

was used to highlight the differences that can occur in practice between standard and bootstrap

inferences regarding hypotheses on the co-integrating vectors and adjustment coefficients.

A Appendix

A.1 Preliminary Results

The following Lemma will be used throughtout.

Lemma A.1. Let εt be defined as in Assumption 2. Then, as T →∞,

(i) T−1
∑T

t=1E (εtε
′
t|Ft−1) = T−1

∑T
t=1 σthtσ

′
t
p→ Σ̄ :=

∫ 1
0 Σ (s) ds;

(ii) T−1
∑T

t=1 (E (εtε
′
t|Ft−1)⊗ εt−i) = T−1

∑T
t=1(σthtσ

′
t ⊗ σt−izt−i)

p→ 0 for i ≥ 1;

(iii) T−1
∑T

t=1(E (εtε
′
t|Ft−1)⊗ εt−iε′t−j) = T−1

∑T
t=1(σthtσ

′
t ⊗ σt−izt−iz′t−jσ′t−j)

p→
∫ 1

0 [σ (s)⊗ σ (s)] τ ij [σ (s)⊗ σ (s)]′ ds, for i, j ≥ 1.

Proof. For part (i), notice that

1

T

T∑
t=1

σthtσ
′
t =

1

T

T∑
t=1

σt (ht − Ip)σ′t +
1

T

T∑
t=1

σtσ
′
t
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where T−1
∑T

t=1 σtσ
′
t → Σ̄. For the term T−1

∑T
t=1 σt (ht − Ip)σ′t we can proceed as in Theorem

A.1 of Cavaliere and Taylor (2009), using supt ||ht|| < ∞ (which is implied by the moment

assumption on εt) and that ||σ (u)σ (u)′ || is a càdlàg process in D[0, 1]. Notice that Cavaliere

and Taylor (2009) require the stochastic term (ht − Ip) to be a mixingale, but their proof of

Theorem A.1 goes through by replacing this assumption with Assumption 2(b) i. of Section 2.

Parts (ii) and (iii) follow similarly. �

A.2 Results for The Asymptotic Test Statistics

Proof of Lemma 1. Assumption 2(b) implies that zt satisfies a functional central limit

theorem (Brown, 1971, Theorem 3), since the higher moment assumption implies a conditional

Lindeberg condition. Therefore

WT (·) :=
1

T 1/2

bT ·c∑
t=1

zt
w→W (·), (A.1)

where W is a p-dimensional standard Brownian motion. Next, define

σT (u) = σbTuc+1, 0 ≤ u < 1, σT (1) = σT ,

and

MT (·) :=

∫ ·
0
σT (s)dWT (s) =

1

T 1/2

bT ·c∑
t=1

σtzt.

It is clear that σT (·) → σ(·) in DRp×p [0, 1], and since both σT and σ are non-stochastic, this

holds jointly with (A.1), i.e., (σT (·),WT (·)) w→ (σ(·),W (·)). Because supT T
−1
∑T

t=1E(ztz
′
t) =

Ip <∞, it follows from Theorem 2.1 of Hansen (1992b) that

(σT (·),WT (·),MT (·)) w→ (σ(·),W (·),M(·)) . (A.2)

Next, define ∫ 1

0
MT (s)dMT (s)′ =

1

T

T∑
t=1

(
t−1∑
i=1

σizi

)
z′tσ
′
t,

so that

vec

∫ 1

0
MT (s)dMT (s)′ =

∫ 1

0
[σT (s)⊗MT (s)] dWT (s).

Via the continuous mapping theorem, (A.2) implies

([σT (·)⊗MT (·)] ,WT (·)) w→ ([σ(·)⊗M(·)] ,W (·)) ,

so applying Theorem 2.1 of Hansen (1992b) once more, we find

vec

∫ 1

0
MT (s)dMT (s)′

w→
∫ 1

0
[σ(s)⊗M(s)] dW (s) = vec

∫ 1

0
M(s)dM(s)′,

jointly with (A.2). �

27



Proof of Lemma 2. Define X#
βt = (Z ′βt+1, Z

′
2t+1)′, with Zβt = β#′Z1t; therefore, X#

βt

equals Xβt except that the mean ρ′1 has been subtracted from β′Xt−1. This means that X#
βt =

ΦX#
β,t−1 + Fεt, see Section 2.1, a stable vector process (because ρ(Φ) < 1) with zero mean,

except for the effect of fixed starting values. Because
∥∥Φi

∥∥ ≤ cλi for some positive constant c

and |λ| < 1, we therefore may write

X#
βt = ΦtX#

β0 +
t−1∑
i=0

ΦiFεt−i =
t−1∑
i=0

ΦiFεt−i + op(1),

where the op(1) term will be neglected in the following.

First, as in Lemma A.1 of Cavaliere, Rahbek and Taylor (2010b) we have that(
β#′M11β

# β#′M12

M21β
# M22

)
=

1

T

T∑
t=1

X#
β,t−1X

#′
β,t−1

p→
∞∑
i=0

ΦiF Σ̄F ′Φi′ =:

(
M̄ββ M̄β2

M̄2β M̄22

)
,

(A.3)

from which we find

β#′S11β
# = β#′M11β

# − β#′M12M
−1
22 M21β

#

p→ M̄ββ − M̄β2M̄
−1
22 M̄2β =: Σ̄ββ .

The convergence in (A.3) is obtained as follows.

Consider

1

T

T∑
t=1

X#
β,t−1X

#′
β,t−1 =

1

T

T∑
t=1

t−1∑
i=1

t−1∑
j=1

Φi−1Fεt−iε
′
t−jF

′Φj−1′

=
1

T

T∑
t=1

t−1∑
i=1

Φi−1Fσt−iht−iσ
′
t−iF

′Φi−1′

+
1

T

T∑
t=1

t−1∑
i=1

Φi−1F (εt−iε
′
t−i − σt−iht−iσ′t−i)F ′Φi−1′

+
1

T

T∑
t=1

t−1∑
i=1

t−1∑
j=1,j 6=i

Φi−1Fεt−iε
′
t−jF

′Φj−1′

=: AT +BT + CT ,

where AT , BT and CT are implicitly defined. Using Lemma A.1 (a), we find that

AT =
T−1∑
i=1

Φi−1F

(
1

T

T−i∑
t=1

σthtσ
′
t

)
F ′Φi−1′ p→

∞∑
i=1

ΦiF Σ̄F ′Φi′.

Next,

BT =

T−1∑
i=1

Φi−1F

(
1

T

T−i∑
t=1

σt(ztz
′
t − ht)σ′t

)
F ′Φi−1′ = op(1),

by the martingale law of large numbers, using the fact that zt has finite fourth moment, σt

is a bounded sequence, and
∥∥Φi

∥∥ ≤ cλi. Using the fact that E(εt−iε
′
t−j |Ft−k) = 0 with
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k = max(i, j) + 1 and that εt−iε
′
t−j has bounded variance because σt and τ ij are bounded, it

follows that CT = op(1), which proves (A.3).

By the same approach, we have(
β#′M1ε

M2ε

)
:=

1

T

T∑
t=1

X#
β,t−1ε

′
t
p→ 0, (A.4)

so that

β#′S10 = β#′S1ε + β#′S11β
#α′

= β#′M1ε − β#′M12M
−1
22 M2ε + β#′S11β

#α′

p→ Σ̄ββα
′ =: Σ̄β0,

and, defining Sεε := Mεε −Mε2M
−1
22 M2ε with Mεε := T−1

∑T
t=1 εtε

′
t,

S00 = αβ#′S10 + Sε0

= αβ#′S10 + Sεε + Sε1β
#α′

= αβ#′S10 +Mεε −Mε2M
−1
22 M2ε +Mε1β

#α′ −Mε2M
−1
22 M21β

#α′

p→ αΣ̄β0 + Σ̄ = αΣ̄ββα
′ + Σ̄ =: Σ̄00.

This proves (10).

To prove (11), we start with

vecX
#

β,t−1ε
′
t = vec Φt−1X#

β0ε
′
t +

t−1∑
i=1

vec Φi−1Fεt−iε
′
t.

For any fixed n ∈ N, consider the decomposition

1

T 1/2

T∑
t=1

vecX
#

β,t−1ε
′
t = S

(n)
T +R

(n)
T +R0T , (A.5)

where (taking zt = 0 and hence εt = 0 for t ≤ 0)

S
(n)
T :=

1

T 1/2

T∑
t=1

n∑
i=1

vec Φi−1Fεt−iε
′
t =

n∑
i=1

(Ip ⊗ Φi−1F )
1

T 1/2

T∑
t=1

(σt ⊗ σt−i)(zt ⊗ zt−i),

R
(n)
T :=

1

T 1/2

T∑
t=1

t−1∑
i=n+1

vec Φi−1Fεt−iε
′
t, R0T :=

1

T 1/2

T∑
t=1

vec Φt−1X#
β0ε

′
t.

We will focus first on the limit of S
(n)
T as T →∞ for fixed n, and then let n→∞ to obtain the

limiting distribution of the right-hand side of (A.5), where we need to show that ‖R0T ‖ = op(1)

and limn→∞ lim supT→∞ P (‖R(n)
T ‖ > ε) = 0 for all ε > 0, see Proposition 6.3.9 of Brockwell

and Davis (1991).

Consider the process

U
(n)
t =


(zt ⊗ zt−1)

...

(zt ⊗ zt−n)

 .
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Assumption 2 (b) implies that U
(n)
t is a vector martingale difference sequence, with conditional

variance matrix satisfying

1

T

T∑
t=1

E(U
(n)
t U

(n)′
t |Ft−1)

p→ τ (n) = E(U
(n)
t U

(n)′
t ),

where τ (n) is a matrix with blocks τ ij , i, j = 1, . . . , n. Furthermore, the finite (4r)th moment

of zt implies that U
(n)
t has a finite (2r)th moment, r > 1, which in turn implies a Lindeberg

condition, such that U
(n)
t satisfies the invariance principle of Brown (1971), i.e.,

W
(n)
T (·) =


W1T (·)

...

WnT (·)

 :=
1

T 1/2

bT ·c∑
t=1

U
(n)
t

w→W (n)(·) =


W1(·)

...

Wn(·)

 ,

where W (n) is a vector Brownian motion with variance matrix τ (n), independent of W because

E(U
(n)
t z′t) = 0 by Assumption 2 (b) ii.

Next, we may write

S
(n)
T =

n∑
i=1

(Ip ⊗ Φi−1F )

∫ 1

0
[σT (s)⊗ σT (s− i/T )]dWiT (s),

which by Theorem 2.1 of Hansen (1992b) converges weakly to

S(n) :=

n∑
i=1

(Ip ⊗ Φi−1F )

∫ 1

0
[σ(s)⊗ σ(s)]dWi(s) ∼ N(0, V (n)),

with

V (n) :=

n∑
i=1

n∑
j=1

(Ip ⊗ Φi−1F )

∫ 1

0
[σ(s)⊗ σ(s)]τ ij [σ(s)⊗ σ(s)]′ds(Ip ⊗ Φj−1F )′.

Because σ(u) and τ ij are bounded and ρ(Φ) < 1, limn→∞ V
(n) = V := V (∞), and as n → ∞,

S(n) w→ N(0, V ).

It is easily seen that the assumptions imply that R0T has mean zero and variance of order

T−1, so that R0T = op(1). Similarly, for each fixed T and n, R
(n)
T has mean zero and variance

matrix

T−1∑
i=n+1

T−1∑
j=n+1

(Ip ⊗ Φi−1)

[
1

T

T∑
t=i+1

(σt ⊗ Fσt−i)τ ij(σt ⊗ Fσt−j)′
]

(Ip ⊗ Φj−1)′,

the matrix norm of which is less than

T−1∑
i=n+1

T−1∑
j=n+1

∥∥Ip ⊗ Φi−1
∥∥ 1

T

T∑
t=i+1

∥∥(σt ⊗ Fσt−i)τ ij(σt ⊗ Fσt−j)′
∥∥∥∥Ip ⊗ Φj−1

∥∥
≤

∞∑
i=n+1

∞∑
j=n+1

p ‖Φ‖i+j−2 max
n<i,j<t<T,

∥∥(σt ⊗ Fσt−i)τ ij(σt ⊗ Fσt−j)′
∥∥ ,
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and since the final factor is bounded because σ(u) and τ ij are bounded, this converges to 0 as

n→∞. Therefore, using Chebyshev’s inequality,

lim
n→∞

lim sup
T→∞

P (‖R(n)
T ‖ > ε) = 0

for all ε > 0, and hence

1

T 1/2

T∑
t=1

vecX
#

β,t−1ε
′
t
w→ N(0, V ).

From the definition of β#′S1ε, this in turn implies

T 1/2β#′S1ε
w→ N(0,Ω),

with Ω =
[
I : −M̄β2M̄

−1
22

]
V
[
I : −M̄β2M̄

−1
22

]′
. This proves (11).

To prove (12) and (13), we note that from (3) with µDt = αρ′1 and hence CµDt = 0, we

have

B′TZ1t =

(
T−1/2(β′⊥C

∑t−1
i=1 εi + β′⊥St−1 + β⊥C0)

1

)
.

Letting GT (·) = B′TZ1,bT ·c+1, we have GT (·) w→ G(·), using the fact that β′⊥St is linear in Xβt,
and T−1/2XβbT ·c = op(1). Therefore, using the continuous mapping theorem and Theorem 2.1

of Hansen (1992b), we have that

(
B′TM11BT , BTM1ε

)
=

(∫ 1

0
GT (s)GT (s)′ds,

∫ 1

0
GT (s)dMT (s)′

)
w→

(∫ 1

0
G(s)G(s)′ds,

∫ 1

0
G(s)dM(s)′

)
. (A.6)

The fact that Z2t is a linear process in εt with exponentially decaying weights implies that

B′TM12 = Op(T
−1/2), B′TM11β

# = Op(T
−1/2), (A.7)

which together with (A.3) and (A.4), implies that (A.6)–(A.7) also holds with M11 and M1ε

replaced by S11 and S1ε, respectively. �

Proof of Theorem 1. Consistency of β̂
#

follows from the limiting behaviour of the con-

centrated pseudo-log-likelihood (9), together with the results of Lemma 2. This is analysed in

detail in Lemmas 13.1 and Theorem 13.3 of Johansen (1996), which can be applied directly to

the present case. It also follows that β̂2 − β2 = Op(T
−1) and ρ̂1 − ρ = Op(T

−1/2), and this in

turn implies that

α̂ = S01β̂
#

(β̂
#′
S11β̂

#
)−1 = S01β

#(β#′S11β
#)−1 + op(1)

p→ Σ̄0βΣ̄−1
ββ = α,

and similarly

Σ̂ = S00 − S01β̂
#

(β̂
#′
S11β̂

#
)−1β̂

#′
S10 = Sεε − Sε1β#(β#′S11β

#)−1β#′S1ε + op(1)
p→ Σ̄.
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The PML estimator of Ψ is readily obtained from the unconcentrated pseudo-log-likelihood,

and this leads to

Ψ̂ = M−1
22 (M20 −M21β̂

#
α̂′) = Ψ +M−1

22

[
M21(β#α′ − β̂#

α̂′) +M2ε

]
p→ Ψ.

This proves part (a).

For the asymptotic distributions of the estimators, we use the fact that consistency at the

appropriate rate, and a sufficient degree of differentiability, allows the following result based on

a second-degree Taylor approximation of `:

D−1
T (θ̂ − θ) =

(
−D′T

∂2`(θ)

∂θ∂θ′
DT

)−1

D′T
∂`(θ)

∂θ
+ op(1), (A.8)

where θ is the parameter vector and DT is a matrix chosen such that the matrix in parentheses

converges to a finite non-singular limit. See Appendix C of Johansen (1991) and Saikkonen

(1995) for the extension of the usual argument to models with different rates of convergence in

different directions. Choosing

θ =

(
vecβ#

2

vecα′

)
, DT =

(
Ir ⊗DβT 0

0 T−1/2Ipr

)
, DβT =

(
T−1I(p−r) 0

0 T−1/2

)
,

we have

D′T
∂`(θ)

∂θ
=

(
T vec(D′βT c

#′
⊥ S1εΣ̄

−1α)

T 1/2 vec(β#′S1εΣ̄
−1)

)
w→

(
vec
∫ 1

0 AG(s)dM(s)′Σ̄−1α

N(0, [Σ̄−1 ⊗ Ir]Ω[Σ̄−1 ⊗ Ip]

)
, (A.9)

−D′T
∂`2(θ)

∂θ∂θ
DT =

(
(α′Σ̄−1α)⊗ (TD′βT c

#′
⊥ S11c

#
⊥DβT ) (α′Σ̄−1)⊗ (T 1/2D′βT c

#′
⊥ S11β

#)

(Σ̄−1α)⊗ (T 1/2β#′S11c
#
⊥DβT ) Σ̄−1 ⊗ (β#′S11β

#)

)
+ op(1)

w→

 (α′Σ̄−1α)⊗
(∫ 1

0 AG(s)G(s)′dsA′
)

0

0 Σ̄−1 ⊗ Σ̄ββ

 , (A.10)

where A = diag(c′⊥β⊥(β′⊥β⊥)−1, 1); this matrix arises from

T 1/2D′βT c
#
⊥Z1t =

(
T−1/2c′⊥Xt−1

1

)
= AB′TZ1t + op(1),

because c′⊥Xt−1 = c′⊥β(β′β)−1β′Xt−1 +c′⊥β⊥(β′⊥β⊥)−1β′⊥Xt−1. Note that Σ̄ is the pseudo-true

value of Σ; formally, one should include vech Σ in the parameter vector θ, or use the pseudo-

log-likelihood concentrated with respect to Σ, but this will lead to the same result, since the

asymptotic information is block-diagonal with respect to vech Σ and the other parameters.

Combining (A.8), (A.9) and (A.10) leads to part (b).

For part (c), let θ̃ denote the PMLEs under the restrictions in (5). Consistency of θ̃, which

is proved formally in Theorem 3, together with a second-order Taylor series expansion leads to

the following expression of the PLR test statistic under H0:

LRT := −2
(
`(θ̃)− `(θ̂)

)
= (θ̃ − θ̂)′Ĥ(θ̃ − θ̂) + op(1),
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where Ĥ = −∂2`(θ̂)/∂θ∂θ′. Standard derivations involving restricted maximum likelihood

estimation lead to

D−1
T (θ̃ − θ̂) = −D−1

T Ĥ
−1R′(RĤ−1R′)−1R(θ̂ − θ) + op(1).

Let D̃T = diag(T−1Irβ , T
−1/2Irα), so that

D̃−1
T RDT → R. (A.11)

Here we use the fact that the restrictions do not involve ρ1, so that Rββ̂
#

2 only involves linear

combinations of the Op(T
−1)-consistent estimator β̂2. Then

LRT = (θ̂ − θ)′(DTR
′D̃−1

T )
[
(D̃−1

T RDT )(DT ĤDT )−1(DTR
′D̃−1

T )
]−1

×(D̃−1
T RDT )D−1

T (θ̂ − θ) + op(1),

and combining this with (A.8), (A.9), (A.10) and (A.11), this leads to the results in part (c),

where Z ∼ N(0, Irα) is obtained as the limit in distribution of(
Rα[I ⊗ Σ̄−1

ββ ]Ω[I ⊗ Σ̄−1
ββ ]R′α

)−1/2
T 1/2Rα vec(α̂− α)′.

Because the asymptotic distribution of T 1/2 vec(α̂− α)′ is defined from the Brownian motions

Wi, see the proof of Lemma 2, and these are independent of W and hence (Gc,Mα), it follows

that Z is also independent of these. �

Proof of Lemma 3. The proof follows the same approach as the proof of Lemma A.5

of Cavaliere, Rahbek and Taylor (2010b). As indicated there, it suffices to prove V̂T (u)
p→

V (u) for fixed u ∈ [0, 1], which is then strengthened to uniform convergence because V̂T (u)

is monotonically increasing and V (u) is continuous in u. Letting VT (u) = T−1
∑bTuc

t=1 εtε
′
t, we

have V̂T (u)− VT (u) = op(1) because of consistency (at the appropriate rate) of γ̂. Moreover,

VT (u) = T−1

bTuc∑
t=1

εtε
′
t = T−1

bTuc∑
t=1

σtztz
′
tσ
′
t

= T−1

bTuc∑
t=1

σt
(
ztz
′
t − ht

)
σ′t + T−1

bTuc∑
t=1

σt (ht − Ip)σ′t + T−1

bTuc∑
t=1

σtσ
′
t

=: A1T (u) +A2T (u) +A3T (u) ,

with A1T (·), A2T (·) and A3T (·) defined implicitly.

First, since (ztz
′
t − ht) is a martingale difference sequence with bounded fourth order mo-

ments and σt is non-stochastic and bounded, σt (ztz
′
t − ht)σ′t is uncorrelated over time and

A1T (u)
p→ 0 by a standard application of Chebyshev’s inequality.

Second, since by Assumption 2 (i) T−1
∑bTuc

t=1 (ht − Ip)
p→ 0 and σt = σ (t/T ) with σ (·)

càdlàg, by Lemma A.1 we have that A2T (u)
p→ 0.
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Finally, Assumption 2 (a) implies that

A3T (u) =
1

T

bTuc∑
t=1

Σ(t/T )→
∫ u

0
Σ(s)ds.

Taken together, these results imply that VT (u)
p→
∫ u

0 Σ(s)ds, as required. �

Proof of Theorem 2. The results will follow from the asymptotic properties Î, which is

defined from sums of the type
∑T

t=1(ε̂tε̂
′
t ⊗ ZitZ ′jt), i, j = 1, 2. Consider first

1

T

T∑
t=1

(ε̂tε̂
′
t ⊗B′TZ1tZ

′
1tBT ) =

∫ 1

0
[dV̂T (s)⊗GT (s)GT (s)′],

where the right-hand side should be read as a matrix with blocks
∫ 1

0 GT (s)GT (s)′dV̂T,ij(s).

Because Lemma 3 and the results in the proof of Lemma 1 imply (GT (·), V̂T (·)) w→ (G(·), V (·)),
we find

1

T

T∑
t=1

(ε̂tε̂
′
t ⊗B′TZ1tZ

′
1tBT )

w→
∫ 1

0
[dV (s)⊗G(s)G(s)′] =

∫ 1

0
[Σ(s)⊗G(s)G(s)′]ds.

Note that V (·) is a deterministic matrix function of bounded variation, so that the limiting

integral is a Lebesgue-Stieltjes integral, and the result follows from the continuous mapping

theorem. This in turn implies

T∑
t=1

(ε̂tε̂
′
t ⊗D′βT c

#′
⊥ Z1tZ

′
1tc

#
⊥DβT )

w→
∫ 1

0
[Σ(s)⊗Gc(s)Gc(s)′]ds, (A.12)

where DβT and Gc(·) are as defined in (the proof of) Theorem 1. Next, consider

1

T

T∑
t=1

(ε̂tε̂
′
t ⊗ X#

β,t−1X
#′
β,t−1) =

1

T

T∑
t=1

(εtε
′
t ⊗ X#

β,t−1X
#′
β,t−1) + op(1),

where X#
βt is as defined in the proof of Lemma 2, and the asymptotic negligibility of the estima-

tion error in ε̂t follows from consistency at the appropriate rate of γ̂, and the fact that X#
β,t−1 is a

stable process with bounded fourth moments. Using again X#
β,t−1 = Φt−1X#

β0+
∑t−1

i=1 Φi−1Fεt−i,

we find

1

T

T∑
t=1

(εtε
′
t ⊗ X#

β,t−1X
#′
β,t−1)

=
1

T

T∑
t=1

t−1∑
i=1

t−1∑
j=1

(εtε
′
t ⊗ Φi−1Fεt−iε

′
t−jF

′Φ′j−1)

+
1

T

T∑
t=1

(εtε
′
t ⊗ Φt−1X#

β0X
#′
β0Φ′t−1)

+
1

T

T∑
t=1

t−1∑
i=1

(εtε
′
t ⊗ [Φt−1X#

β0ε
′
t−iF

′Φ′i−1 + Φi−1Fεt−iX#′
β0Φ′t−1]).
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The second right-hand side term is op(1), because εtε
′
t has bounded mean and bounded variance,

and ρ(Φ) < 1. The third term converges in probability to 0, because T−1
∑T

t=1(ztz
′
t⊗zt−i)

p→ 0

by Assumption 2 (b) ii and the law of large numbers for martingale difference sequences. (As

before, take zt = 0 and hence εt = 0 for t ≤ 0.) By Assumption 2 (b) iii and the law of large

numbers, we have T−1
∑T

t=1(ztz
′
t ⊗ zt−izt−j)

p→ τ ij . From this it follows that

1

T

T∑
t=1

(ε̂tε̂
′
t ⊗ X#

β,t−1X
#′
β,t−1)

p→
∞∑
i=1

∞∑
j=1

(Ip ⊗ Φi−1F )

∫ 1

0
[σ(s)⊗ σ(s)]τ ij [σ(s)⊗ σ(s)]′ds(Ip ⊗ Φj−1F )′, (A.13)

which equals V = V (∞) defined in the proof of Lemma 2. Following the same approach, it can

be shown that

1

T 1/2

T∑
t=1

(ε̂tε̂
′
t ⊗DβT c

#
⊥Z1tX#′

β,t−1)
p→ 0. (A.14)

The result of Theorem 2 now follows from (A.12)–(A.14), combined with (A.8)–(A.10) and the

results of Theorem 1. �

Proof of Theorem 3. The proof mimics the proof of consistency given in Theorem 4.7of

Kristensen and Rahbek (2013) [KR13], and is based on an application of KR13 (Lemma D.1),

where a third-order Taylor expansion of the log-likelihood function is employed. In fact, the

proof we give below implies also weak convergence of the QMLE ϑ̂, see KR13 (Lemma D.2

with vT := T ). With ϑ :=
(
φ′, ψ′

)′ ∈ Rlφ×lψ , the criterion function in Lemma D.1 in KR13

reduces here to, cf. (6), QT (ϑ) := − 1
T ` (ϑ) for which we need to evaluate first-, second- and

third-order differentials. Moreover, in terms of Lemma D.1, set UT = VT :=
√
TDϑT , where

DϑT is a normalization matrix defined below.

Note initially that under H ′0, vec (α′) = Gψ + g and vec
(
β#
)

= Hφ + h, and therefore,

using in particular β# = c̄# + c#
⊥β

#
2 ,

d vec
(
β#

2

)
=
(
Ir ⊗ c̄#′

⊥

)
Hdφ and d vec

(
α′
)

= Gdψ, (A.15)

Hence it follows immediately that the first- and second-order derivatives of ` (·), and hence of

QT (·), from the proof of Theorem 1 can be applied using classic rules for Jacobians as done

next.

Consider the first-order differentials of ` (ϑ) in the direction dϑ, d` (ϑ; dϑ). We find that

− 1
T d` (ϑ; dϑ) = tr

{
Σ−1αdβ#′

[
S10 − S11β

#α′
]}

+ tr
{

Σ−1dαβ#′
[
S10 − S11β

#α′
]}

,

which evaluated at ϑ = ϑ0, gives

− 1
T d` (ϑ0; dϑ) = tr

{
c#′
⊥ S1εΣ

−1αdβ#′
2

}
+ tr

{
β#′S1εΣ

−1dα
}

= d vec
(
β#

2

)′
vec
(
c#′
⊥ S1εΣ

−1α
)

+ d vec
(
α′
)

vec
(
β#′S1εΣ

−1
)
.
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Observe, using standard matrix calculus, that

d vec
(
α′
)

vec
(
β#′S1εΣ

−1
)

= dψ′G′ vec
(
β#′S1εΣ

−1
)
,

and, similarly,

d vec
(
β#

2

)′
vec
(
c#′
⊥ S1εΣ

−1α
)

= dφ′H ′ vec
(
c̄#
⊥c

#′
⊥ S1εΣ

−1α
)
.

Inserting the normalization matrix DβT from (A.9), we find,

dφ′H ′ vec
(
c̄#
⊥D
′
βT c

#′
⊥ S1εΣ

−1α
)

= dφ′H ′
(
Ir ⊗ c̄#

⊥D
′
βT

)
vec
(
c#′
⊥ S1εΣ

−1α
)
.

That is, the normalisation DφT :=
(
Ir ⊗DβT c̄

#′
⊥

)
H replaces (Ir ⊗DβT ) in (A.9). Likewise,

√
TG′ vec

(
β#′S1εΣ̄

−1
)

converges, such that with DϑT := diag
(
DφT , T

−1/2Ilψ
)

replacing DT in

(A.9), we have that

D′ϑT

[
− 1
T
∂`(ϑ)
∂ϑ

]∣∣∣
ϑ=ϑ0

w→

 H ′ vec
(
c̄#
⊥A

∫ 1
0 G(s)dM(s)′Σ̄−1α

)
N
(
0, G′

[
Σ̄−1 ⊗ Ir

]
Ω
[
Σ̄−1 ⊗ Ir

]
G
)
 .

Consider next the second-order differentials of ` (ϑ) in the directions dϑ and dϑ̄, d2`
(
ϑ; dϑ, dϑ̄

)
.

Observe that by definition,

− 1
T d

2`
(
ϑ; dϑ, dϑ̄

)
= tr

{
Σ−1dᾱdβ#′

[
S10 − S11β

#α′
]}
− tr

{
Σ−1αdβ#′S11β

#dᾱ′
}

− tr
{
α′Σ−1αdβ#′S11dβ̄

#
}

+ tr
{

Σ−1dαdβ̄
#′
[
S10 − S11β

#α′
]}

+ tr
{

Σ−1dαβ#′S11β
#dᾱ′

}
− tr

{
α′Σ−1dαβ#′S11dβ̄

#
}

and, hence, at ϑ = ϑ0,

− 1
T d

2` (ϑ0; dφ, dφ) = − tr
{
α′Σ−1αdβ#′S11dβ

#
}

= − vec
(
dβ#

2

)′ (
α′Σ−1α⊗ c#′

⊥ S11c
#
⊥

)
vec
(
dβ#

2

)
= −dφ′H ′

(
α′Σ−1α⊗ c̄#

⊥c
#′
⊥ S11c

#
⊥ c̄

#′
⊥

)
Hdφ.

As before, inserting DφT we find,

dφ′D′φT

(
α′Σ−1α⊗ c̄#

⊥c
#′
⊥ S11c

#
⊥ c̄

#′
⊥

)
DφTHdφ

= dφ′H ′
(
α′Σ−1α⊗ c̄#

⊥

[
D′βT c

#′
⊥ S11c

#
⊥DβT

]
c̄#′
⊥

)
Hdφ

which converges weakly, see (A.10). Likewise,

− 1
T d

2` (ϑ0; dψ, dψ) = − tr
{

Σ−1dαβ#′S11β
#dα′

}
= −dψ′G′

(
Σ−1 ⊗ β#′S11β

#
)
Gdψ,

which converges in probability, see (A.10). Finally,

− 1
T d

2` (ϑ0; dφ, dψ) = tr
{

Σ−1dαdβ#′S1ε

}
− tr

{
Σ−1αdβ#′S11β

#dα′
}
,

36



where, for example, the last term can be rewritten as,

tr
{

Σ−1αdβ#′S11β
#dα′

}
= vec

(
dβ#

2

)′ (
α′Σ−1 ⊗ c#′

⊥ S11β
#
)

vec
(
dα′
)

= dφ′H ′
(
Ir ⊗ c̄#

⊥

)(
α′Σ−1 ⊗ c#′

⊥ S11β
#
)
Gdψ,

and DβT can be inserted as above. Collecting terms, we find, using (A.10), that

D′ϑT

(
−∂2`(ϑ)
∂ϑ∂ϑ′

)∣∣∣
ϑ=ϑ0,Σ=Σ̄

DϑT
w→ H ′

(
α′Σ−1α⊗ c̄#

⊥

[∫ 1
0 AG(s)G(s)′A′ds

]
c̄#′
⊥

)
H 0

0 G′
(
Σ̄−1 ⊗ Σββ

)
G

 .

Finally, consider third-order differentials of ` (ϑ) , d3` (·) say, in the directions dϑ, dϑ̄ and

dϑ∗. Using Lemma D.1 in KR13, the supremum of the norm of 1
T d

3` (·) needs to be bounded

in probability uniformly over ϑ ∈ NT (ϑ0) , where the sequence of neighbourhoods is given by,

NT (ϑ0) =
{
ϑ | Υ

1/2
T ‖ϑ− ϑ0‖ ≤ ε

}
.

Here Υ
1/2
T := T−1/2D−1

ϑT and (some small) ε > 0. In terms of dϑ in the differential, dϑ should be

normalized as Υ
−1/2
T dϑ; and likewise for ϑ̄, ϑ∗. Now, the only non-zero third-order differentials

of 1
T ` (ϑ) have the form,

tr
{
dα∗′Σ−1dᾱdβ#′

2 c#′
⊥ S11β

}
, tr

{
α′Σ−1dᾱdβ#′

2 c#′
⊥ S11c

#
⊥dβ

#∗
2

}
.

Consequently, using the identities in (A.15), and in particular that in NT (ϑ0), φ−φ0 = T−1/2h,

with ‖h‖ ≤ ε , it follows that,

T−1 sup
ϑ∈NT (ϑ0)

∥∥∥d3`
(
ϑ; Υ

−1/2
T dϑ,Υ

−1/2
T dϑΥ

−1/2
T dϑ̄,Υ

−1/2
T dϑ∗

)∥∥∥ ,
is bounded by,

CT ‖dϑ‖
∥∥dϑ̄∥∥ ‖dϑ∗‖∥∥ 1

T S11

∥∥ = Op (1) ,

since
∥∥ 1
T S11

∥∥ converges weakly, and CT contains (standard) terms converging in probability.

The consistency ṼT follows by similar arguments as in the proof of Lemma 3. �

A.3 Results for the bootstrap tests

Proof of Lemma 4. The proof follows as in the proof of Lemma A.5 in Cavaliere, Rahbek

and Taylor (2010b) by showing that the conditional variance of W ∗T (·) satisfies

E∗
(
W ∗T (u)W ∗T (u)′

)
=

1

T

bT ·c∑
t=1

ε̃c,tε̃
′
c,t =

1

T

bT ·c∑
t=1

ε̃tε̃
′
t + op (1)

p→
∫ u

0
Σ (s) ds.

The latter convergence is established in Theorem 3 and this completes the proof. �
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Proof of Lemma 5. As done for the proof of Lemma 2, define X#∗
βt = (Z∗′βt+1, Z

∗′
2t+1)′, with

Z∗βt = β̃
#′
Z∗1t; therefore, X#∗

βt equals X∗βt except that ρ̃′1D1t has been added to β̃
′
X∗t−1. This

means that X#∗
βt = Φ̃X#∗

β,t−1+F̃ ε∗t , where Φ̃ and F̃ are defined as Φ and F but with the restricted

estimators replacing the population parameter values. Moreover, since ||Φi|| ≤ cλi for some

positive constant c and |λ| < 1 (see the proof of Lemma 2), the consistency of the restricted

estimators implies that for T large enough, ||Φ̃i|| ≤ cλi. The initial value is X#∗
β,0 = X#

β,0, as the

bootstrap sample is initializated at the original data. We therefore may write

X#∗
βt = Φ̃tX#∗

β0 +

t−1∑
i=0

Φ̃jF̃ ε∗t−i = Φ̃tX#
β0 +

t−1∑
i=0

Φ̃iF̃ ε∗t−i =

t−1∑
i=0

Φ̃iF̃ ε∗t−i + op (1) ,

where the op (1) term will be neglected in the following.

First, as in Lemma A.7 of Cavaliere, Rahbek and Taylor (2010b) we have that(
β̃

#′
M∗11β̃

#
β̃

#′
M12

M21β̃
#

M22

)
=

1

T

T∑
t=1

X#∗
β,t−1X

#∗′
β,t−1

p∗→p

∞∑
i=0

ΦiF Σ̄F ′Φi′ =:

(
M̄ββ M̄β2

M̄2β M̄22

)
,

(A.16)

from which we find

β̂
#′
S∗11β̂

#
= β̂

#′
M∗11β̂

# − β̂#′
M∗12M

∗−1
22 M∗21β̂

#

p∗→p M̄ββ − M̄β2M̄
−1
22 M̄2β = Σ̄ββ .

The convergence in (A.16) follows by the triangle inequality by using the following two results.

First, as ε∗t ε
∗′
t = ε̃c,tε̃

′
c,tw

2
t and hence E∗ (ε∗t ε

∗′
t ) = ε̃c,tε̃

′
c,t, we have that

E∗

(
1

T

T∑
t=1

X#∗
β,t−1X

#∗′
β,t−1

)
=

1

T

T∑
t=1

E∗
(
X#∗
β,t−1X

#∗′
β,t−1

)
=

1

T

T∑
t=1

t−1∑
i=1

Φ̃i−1F̃E∗
(
ε∗t−iε

∗′
t−i
)
F̃ ′Φ̃i−1′

=

T−1∑
i=1

Φ̃i−1F̃

(
1

T

T−i∑
t=1

ε̃c,tε̃
′
c,t

)
F̃ ′Φ̃i−1′

=
T−1∑
i=1

Φ̃i−1F̃

(
1

T

T∑
t=1

ε̃c,tε̃
′
c,t

)
F̃ ′Φ̃i−1′ +

T−1∑
i=1

Φ̃i−1F̃

(
1

T

T∑
t=T−i+1

ε̃c,tε̃
′
c,t

)
F̃ ′Φ̃i

p→
∞∑
i=0

ΦiF Σ̄F ′Φi′,

since, by consistency of the restricted estimators and Lemma A.1(i),

T−1∑
i=1

Φ̃i−1F̃

(
T−1

T∑
t=1

ε̃c,tε̃
′
c,t

)
F̃ ′Φ̃i−1 p→

∞∑
i=0

ΦiF Σ̄F ′Φi′,

and furthermore∥∥∥∥∥
T−1∑
i=1

Φ̃i−1F̃

(
1

T

T∑
t=T−i+1

ε̃c,tε̃
′
c,t

)
F̃ ′Φ̃i−1

∥∥∥∥∥ ≤
∥∥∥F̃∥∥∥2

(
T−2∑
i=0

∥∥∥Φ̃i
∥∥∥2
i

)
1

T
max

t=1,...,T

∥∥ε̃c,tε̃′c,t∥∥
≤ cT

1

T
max

t=1,...,T

∥∥ε̃c,tε̃′c,t∥∥ = op (1) ,

38



as cT = Op (1) and

P

(
1

T
max

t=1,...,T

∥∥ε̃c,tε̃′c,t∥∥ ≥ ε) ≤
T∑
t=1

P
(∥∥ε̃c,tε̃′c,t∥∥ ≥ εT )

≤
suptE

(∥∥ε̃c,tε̃′c,t∥∥2
)

ε2T
=
E
((
ε̃′c,tε̃c,t

)2)
ε2T

→ 0

as εt has finite 4+ order moments.

Second, using the fact that ε∗t ε
∗′
t − E∗ (ε∗t ε

∗′
t ) = ε̃c,tε̃

′
c,t

(
w2
t − 1

)
, we have that

1

T

T∑
t=1

X#∗
β,t−1X

#∗′
β,t−1 − E

∗

(
1

T

T∑
t=1

X#∗
β,t−1X

#∗′
β,t−1

)

=
1

T

T∑
t=1

t−1∑
i=1

Φ̃i−1F̃
(
ε∗t−iε

∗′
t−i − E∗

(
ε∗t−iε

∗′
t−i
))
F̃ ′Φ̃i−1′ +R∗T

=
T−1∑
i=0

Φ̃i−1F̃

(
1

T

T−i∑
t=1

ε̃c,tε̃
′
c,t

(
w2
t − 1

))
F̃ ′Φ̃i−1′ +R∗T , (A.17)

where R∗T := T−1
∑T

t=1

∑t−1
i=1

∑t−1
j=1,j 6=i Φ̃i−1F̃ (ε∗t−iε

∗′
t−j)F̃

′Φ̃j−1′. To show that (A.17) is of o∗p (1)

in probability, notice first that

vec

(
T−1∑
i=1

Φ̃i−1F̃

(
1

T

T−i∑
t=1

ε̃c,tε̃
′
c,t

(
w2
t − 1

))
F̃ ′Φ̃i−1′

)

=

(
T−1∑
i=1

((
Φ̃i−1F̃

)
⊗
(

Φ̃i−1F̃
))( 1

T

T−i∑
t=1

vec
(
ε̃c,tε̃

′
c,t

) (
w2
t − 1

)))

=

((
1

T

T∑
t=1

(
T−t∑
i=1

((
Φ̃i−1F̃

)
⊗
(

Φ̃i−1F̃
)))

vec
(
ε̃c,tε̃

′
c,t

) (
w2
t − 1

)))
,

which (conditionally on the data) is the average of an independent sequence with variance

1

T 2

T∑
t=1

(
T−t∑
i=1

((
Φ̃i−1F̃

)
⊗
(

Φ̃i−1F̃
)))

vec
(
ε̃c,tε̃

′
c,t

)
vec
(
ε̃c,tε̃

′
c,t

)′(T−t∑
i=1

((
Φ̃i−1F̃

)
⊗
(

Φ̃i−1F̃
)))′

which is of op (1) as
∑T−t

i=1

((
Φ̃i−1F̃

)
⊗
(

Φ̃i−1F̃
))

= Op (1) and εt has finite fourth order

moments. Similarly it can be shown that R∗T is of o∗p (1), in probability.

In the same way of (A.16) it can be proved that(
β̃

#′
M∗1ε

M∗2ε

)
:=

1

T

T∑
t=1

X#∗
β,t−1ε

∗′
t

p∗→p 0, (A.18)

which also implies, as in the proof of Lemma 2, that

β̃
#′
S∗10

p∗→p Σ̄ββα
′ =: Σ̄β0,

and

S∗00
p∗→p Σ̄00.
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This proves (20).

To prove (21) and (22), as in the proof of Lemma 2 notice that we have

B̃′TZ
∗
1t =

(
T−1/2(β̃

′
⊥C̃

∑t−1
i=1 ε

∗
i + β̃

′
⊥S
∗
t−1 + β̃

′
⊥C̃0)

1

)
+ o∗p (1)

in probability (see also Lemma A.4 in Cavaliere, Rahbek and Taylor (2010b) for details on

the o∗p (1) term). Letting G∗T (·) = B̃′TZ
∗
1,bT ·c+1, we have G∗T (·) w∗→p G(·). Using the continuous

mapping theorem and Theorem 2.1 of Hansen (1992b), together with Lemma 4, we have that(
B̃′TM

∗
11B̃T , B̃TM

∗
1ε

)
=

(∫ 1

0
G∗T (s)G∗T (s)′ds,

∫ 1

0
G∗T (s)dM∗T (s)′

)
w→p

(∫ 1

0
G(s)G(s)′ds,

∫ 1

0
G(s)dM(s)′

)
.

The fact that Z∗2t is a linear process in ε∗t with exponentially decaying weights implies that

B̃′TM
∗
12 = O∗p(T

−1/2), B̃′TM
∗
11β̃

#
= O∗p(T

−1/2), in probability,

which together with (A.16) and (A.18), implies that (A.6)–(A.7) also holds with M∗11 and M∗1ε

replaced by S∗11 and S∗1ε, respectively.

Finally, to prove (23), we start with

Y ∗t := vecX#∗
β,t−1ε

∗′
t = vec

(
Φ̃t−1X#∗

β0 +
t−1∑
i=1

Φ̃i−1F̃ ε∗t−i

)
ε∗′t

= vec
(

Φ̃t−1X#∗
β0 ε
∗′
t

)
+ vec

(
t−1∑
i=1

Φ̃i−1F̃ ε∗t−iε
∗′
t

)

= vec
(

Φ̃t−1X#∗
β0 ε
∗′
t

)
+

t−1∑
i=1

(
ε∗t ⊗ Φ̃i−1F̃ ε∗t−i

)
= vec

(
Φ̃t−1X#∗

β0 ε
∗′
t

)
+

t−1∑
i=1

(
Ip ⊗

(
Φ̃i−1F̃

)) (
ε∗t ⊗ ε∗t−i

)
=: Y ∗0,t + Y ∗1,t

with Y ∗0,t and Y ∗1,t defined implicitely. We now prove that show that T−1/2
∑T

t=1 Y
∗
t satisfies (in

probability) a CLT by showing (i) that T−1/2
∑T

t=1 Y
∗

1,t satisfies (in probability) a CLT and (ii)

that T−1/2
∑T

t=1 Y
∗

0,t = o∗p (1) (in probability).

Part (i). With F∗t := σ (w1, w2, . . . , wt), notice that, conditionally on the data, E∗
(
Y ∗1,t|F∗t−1

)
=

0 and hence {Y ∗1,t,F∗t } is a vector martingale difference sequence. We prove that a central

limit theorem holds on T−1/2
∑T

t=1 Y
∗

1,t by proving that its conditional variance converges in

probability and that (conditionally on the data) the Lindeberg condition holds.

First, since for i ≥ 1,

E∗
((
ε∗t ⊗ ε∗t−i

) (
ε∗t ⊗ ε∗t−i

)′ |F∗t−1

)
= E∗

(
ε∗t ε
∗′
t ⊗ ε∗t−iε∗′t−i|F∗t−1

)
=
(
ε̃c,tε̃

′
c,t ⊗ ε∗t−iε∗′t−i

)
,
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we have that

E∗
(
Y ∗1,tY

∗′
1,t|F∗t−1

)
=

t−1∑
i=1

(
Ip ⊗

(
Φ̃i−1F̃

))
E∗
((
ε∗t ε
∗′
t ⊗ ε∗t−iε∗′t−i

)
|F∗t−1

) (
Ip ⊗

(
Φ̃i−1F̃

))′
=

t−1∑
i=1

(
Ip ⊗

(
Φ̃i−1F̃

)) (
ε̃c,tε̃

′
c,t ⊗ ε̃t−iε̃′t−i

)(
Ip ⊗

(
Φ̃i−1F̃

)′)

+

t−1∑
i=1

(
Ip ⊗

(
Φ̃i−1F̃

)) (
ε̃c,tε̃

′
c,t ⊗ ε̃t−iε̃′t−iηt−i

)(
Ip ⊗

(
Φ̃i−1F̃

)′)
,

where ηt := w2
t − 1. Averaging across t yields

1

T

T∑
t=1

E∗
(
Y ∗t Y

∗′
t |F∗t−1

)
=

1

T

T∑
t=1

t−1∑
i=1

(
Ip ⊗

(
Φ̃i−1F̃

)) (
ε̃c,tε̃

′
c,t ⊗ ε̃c,t−iε̃′c,t−i

)(
Ip ⊗

(
Φ̃i−1F̃

)′)

+
1

T

T∑
t=1

t−1∑
i=1

(
Ip ⊗

(
Φ̃i−1F̃

)) (
ε̃c,tε̃

′
c,t ⊗ ε̃c,t−iε̃′c,t−iηt−i

)(
Ip ⊗

(
Φ̃i−1F̃

)′)
=: V0,T + V ∗1,T ,

where V0,T and V ∗1,T are implicitely defined. Notice that V ∗1,T = o∗p (1), in probability, since by

Chebychev’s inequality

V ∗1,T =
1

T

T∑
t=1

t−1∑
i=1

(
Ip ⊗

(
Φ̃i−1F̃

)) (
ε̃c,tε̃

′
c,t ⊗ ε̃c,t−iε̃′c,t−iηt−i

)(
Ip ⊗

(
Φ̃i−1F̃

)′)

=
1

T

T−1∑
t=1

T−t∑
i=1

(
Ip ⊗

(
Φ̃i−1F̃

)) (
ε̃c,t+iε̃

′
c,t+i ⊗ ε̃c,tε̃′c,tηt

)(
Ip ⊗

(
Φ̃i−1F̃

)′)
= o∗p (1) in probability,

as ηt is (conditionally) independent and εt has finite 8+ moments.

Regarding V0,T , we have that

V0,T =
1

T

T∑
t=1

t−1∑
i=1

(
Ip ⊗

(
Φ̃i−1F̃

)) (
ε̃c,tε̃

′
c,t ⊗ ε̃c,t−iε̃′c,t−i

)(
Ip ⊗

(
Φ̃i−1F̃

)′)

=
T−1∑
i=0

(
Ip ⊗

(
Φ̃i−1F̃

)) 1

T

T−i∑
t=1

(
ε̃c,tε̃

′
c,t ⊗ ε̃c,t−iε̃′c,t−i

)(
Ip ⊗

(
Φ̃i−1F̃

)′)
= V

(n)
0,T +R

(n)
0,T ,

where, for any n ≤ T − 1, we set

V
(n)

0,T :=

n∑
i=0

(
Ip ⊗

(
Φ̃i−1F̃

)) 1

T

T−i∑
t=1

(
ε̃c,tε̃

′
c,t ⊗ ε̃c,t−iε̃′c,t−i

)(
Ip ⊗

(
Φ̃i−1F̃

)′)
,
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and

R
(n)
0,T :=

T−1∑
i=n+1

(
Ip ⊗

(
Φ̃i−1F̃

)) 1

T

T∑
t=i+1

(
ε̃c,tε̃

′
c,t ⊗ ε̃c,t−iε̃′c,t−i

)(
Ip ⊗

(
Φ̃i−1F̃

)′)

=

T−1∑
i=n+1

(
Ip ⊗

(
Φi−1F

)) 1

T

T∑
t=i+1

(
εtε
′
t ⊗ εt−iε′t−i

) (
Ip ⊗

(
Φi−1F

)′)
+ op (1) ,

where the op (1) term does not depend on n. We now derive the limit of V
(n)

0,T as T → ∞ for

fixed n, and then let n→∞ to obtain the limiting distribution of V0,T , where we also need to

show that limn→∞ lim supT→∞ P (‖R(n)
0,T ‖ > ε) = 0 for all ε > 0, as in the proof of Lemma 2.

For fixed n,

V
(n)

0,T =
n∑
i=0

(
Ip ⊗

(
Φ̃i−1F̃

)) 1

T

T−i∑
t=1

(
ε̃c,tε̃

′
c,t ⊗ ε̃c,t−iε̃′c,t−i

)(
Ip ⊗

(
Φ̃i−1F̃

)′)
p→

n∑
i=0

(
Ip ⊗

(
Φi−1F

)) ∫ 1

0
[σ(s)⊗ σ(s)]τ ii[σ(s)⊗ σ(s)]′ds

(
Ip ⊗

(
Φi−1F

)′)
=: V (n)†

since for any fixed i, we have that

1

T

T−i∑
t=1

(
ε̃c,tε̃

′
c,t ⊗ ε̃c,t−iε̃′c,t−i

)
=

1

T

T−i∑
t=1

(
εtε
′
t ⊗ εt−iε′t−i

)
+ op (1)

=
1

T

T−i∑
t=1

((
εtε
′
t − σthtσ′t

)
⊗ εt−iε′t−i

)
+

1

T

T−i∑
t=1

(
σthtσ

′
t ⊗ σt−izt−iz′t−iσ′t−i

)
+ op (1)

→p

∫ 1

0
[σ(s)⊗ σ(s)]τ ii[σ(s)⊗ σ(s)]′ds

by Lemma A.1(iii) and as
(
(εtε

′
t − σthtσ′t)⊗ εt−iε′t−i

)
is a martingale difference array with

bounded 1+ moments, so that a WLLN applies (see e.g. Hall and Heyde (1980, Theorem 2.13

(i))). Next, we have that

lim
n→∞

V (n)† =
∞∑
i=0

(
Ip ⊗

(
Φi−1F

)) ∫ 1

0
[σ(s)⊗ σ(s)]τ ii[σ(s)⊗ σ(s)]′ds

(
Ip ⊗

(
Φi−1F

)′)
=: V †.

Finally we have that, for T large enough,

P (‖R(n)
0,T ‖ > ε) = P

(∥∥∥∥∥
T−1∑
i=n+1

(
Ip ⊗

(
Φi−1F

)) 1

T

T∑
t=i+1

(
εtε
′
t ⊗ εt−iε′t−i

) (
Ip ⊗

(
Φi−1F

)′)∥∥∥∥∥ > ε

)

≤ P

(
T−1∑
i=n+1

∥∥(Ip ⊗ (Φi−1F
))∥∥2

∥∥∥∥∥ 1

T

T∑
t=i+1

(
εtε
′
t ⊗ εt−iε′t−i

)∥∥∥∥∥ > ε

)

≤
E
(∑T−1

i=n+1

∥∥(Ip ⊗ (Φi−1F
))∥∥2

∥∥∥ 1
T

∑T
t=i+1

(
εtε
′
t ⊗ εt−iε′t−i

)∥∥∥)
ε

=

∑T−1
i=n+1

∥∥(Ip ⊗ (Φi−1F
))∥∥2

E
∥∥∥ 1
T

∑T
t=i+1

(
εtε
′
t ⊗ εt−iε′t−i

)∥∥∥
ε

≤ Kλ2n

ε
→ 0

as n→∞. This completes the proof that T−1
∑T

t=1E
∗ (Y ∗1,tY ∗′1,t|F∗t−1

) p∗→p V
†.
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We prove the (conditional) Lindberg conditions by showing that T−2
∑T

t=1E
∗ (||Y ∗1,t||4)

→p 0. First, we have that, since ε∗t is independent under P ∗,

E∗
∥∥Y ∗1,t∥∥4

= E∗

∥∥∥∥∥ε∗t ⊗
(
t−1∑
i=1

(
Φ̃i−1F̃

)
ε∗t−i

)∥∥∥∥∥
4

= E∗ ‖ε∗t ‖
4E∗

∥∥∥∥∥
t−1∑
i=1

(
Φ̃i−1F̃

)
ε∗t−i

∥∥∥∥∥
4

≤ K ‖ε̃c,t‖4E∗
∥∥∥∥∥
t−1∑
i=1

(
Φ̃i−1F̃

)
ε∗t−i

∥∥∥∥∥
4

with K = E|w4
t |. Moreover,

E∗

∥∥∥∥∥
t−1∑
i=1

(
Φ̃i−1F̃

)
ε∗t−i

∥∥∥∥∥
4

= E∗

((
t−1∑
i=1

ε∗′t−iF̃
′Φ̃i−1′

)(
t−1∑
i=1

Φ̃i−1F̃ ε∗t−i

))2

= E∗

 t−1∑
i=1

t−1∑
j=1

ε∗′t−iF̃
′Φ̃i−1′Φ̃j−1F̃ ε∗t−j

2

≤ E∗
 t−1∑
i=1

t−1∑
j=1

tr
(
F̃ ′Φ̃i−1′Φ̃j−1F̃

) (
ε∗′t−iε

∗
t−j
)2

=
t−1∑
i=1

t−1∑
j=1

t−1∑
k=1

t−1∑
l=1

tr
(
F̃ ′Φ̃i−1′Φ̃j−1F̃

)
tr
(
F̃ ′Φ̃k−1′Φ̃l−1F̃

)
E∗
(
ε∗′t−iε

∗
t−jε

∗′
t−lε

∗
t−k
)
.

Since

E∗
(
ε∗′t−iε

∗
t−jε

∗′
t−lε

∗
t−k
)

= E∗ (wt−iwt−jwt−kwt−l)
(
ε̃′c,t−iε̃c,t−j ε̃

′
c,t−lε̃c,t−k

)
≤ KI (k = i, l = j)

(
ε̃′c,t−iε̃c,t−j

)2
we have that

1

T 2

T∑
t=1

E∗
(
||Y ∗1,t||4

)
≤ K 1

T 2

T∑
t=1

‖ε̃c,t‖4
t−1∑
i=1

t−1∑
j=1

tr
(
F̃ ′Φ̃i−1′Φ̃j−1F̃

)2 (
ε̃′c,t−iε̃c,t−j

)2
= Op

(
T−1

)
,

since εt has finite 8+ moments and tr
(
F̃ ′Φ̃i−1′Φ̃j−1F̃

)2
is exponentially decaying, see above.

Part (ii). To show this part if suffices to notice that, since X#∗
β0 = X#

β0 due to the initialization

of the bootstrap sample, we have that (conditionally on the original sample)

T−1/2
T∑
t=1

Y ∗0,t = T−1/2
T∑
t=1

vec
(

Φ̃t−1X#∗
β0 ε
∗′
t

)
= T−1/2

T∑
t=1

vec
(

Φ̃t−1X#
β0ε
∗′
t

)
= T−1/2

T∑
t=1

(
ε∗t ⊗ Φ̃t−1X#

β0

)
has variance

1

T 2

T∑
t=1

(
E∗(ε∗t ε

∗′
t )⊗

(
Φ̃t−1X#

β0X
#′
β0Φ̃t−1′

))
=

1

T 2

T∑
t=1

(
ε̃c,tε̃

′
c,t ⊗ Φ̃t−1X#

β0X
#′
β0Φ̃t−1′

)
p∗→p 0
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under the stated assumptions. The proof of Part (ii) completes the proof of (23), since, from

the definition of β̃
#′
S∗1ε, this implies T 1/2β̃

#′
S∗1ε

w→p N(0,Ω†), with

Ω† =
[
I : −M̄β2M̄

−1
22

]
V †
[
I : −M̄β2M̄

−1
22

]′
.

�

Proof of Theorem 4. It follows using the same steps as in the proof of Theorem 1, using

the wild bootstrap results of Lemma 5. �

Proof of Corollary 2. Theorems 4 and 5 imply that, uniformly in probability, the (condi-

tional) cdf of the bootstrap statistic LR∗T satisfies G∗T (·)→ F (·), with F the cdf of the limiting

distribution of LRT . This implies that, under the null hypothesis, P ∗T converges weakly to

U [0, 1], see Hansen (2000, proof of Theorem 5). �

Proof of Theorem 5. It follows using the same steps as in the proof of Theorem 2, using the

wild bootstrap results of Lemma 5 and the fact that, under the assumptions of the Theorem,

we have that, as T →∞,

V̂ ∗T (u) := T−1

bTuc∑
t=1

ε̂∗t ε̂
∗′
t = T−1

bTuc∑
t=1

ε∗t ε
∗′
t + o∗p (1)

p∗→p

∫ u

0
Σ(s)ds =: V (u),

uniformly in u ∈ [0, 1]. This result can be proved by noticing that

1

T

bTuc∑
t=1

ε∗t ε
∗′
t =

1

T

bTuc∑
t=1

ε̃c,tε̃
′
c,t

(
w2
t − 1

)
+

1

T

bTuc∑
t=1

ε̃c,tε̃
′
c,t →p V (u)

as, by Lemma 3, T−1
∑bTuc

t=1 ε̃c,tε̃
′
c,t →p V (u) and, conditionally on the data, ε̃c,tε̃

′
c,t

(
w2
t − 1

)
is

an independent sequence and T−1
∑bTuc

t=1 ε̃c,tε̃
′
c,t

(
w2
t − 1

)
converges to 0 by standard arguments.

�
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Figure 1: Time series (ei) and variance profiles (vi) of VAR(2) residuals, i = 1, 3, 5.
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Table 4: Trace test statistics (Qr) for co-integration rank (r), with asymptotic (pAsy), standard
bootstrap (pIBS) and wild bootstrap (pWBS) p-values.

r Qr pAsy pIBS pWBS

0 191.6 0.000 0.000 0.000
1 105.3 0.000 0.000 0.000
2 41.66 0.009 0.013 0.081
3 17.44 0.117 0.212 0.280
4 2.664 0.645 0.891 0.770
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